Chrysosplenetin for COVID-19

Chrysosplenetin has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed chrysosplenetin in detail.
Shaer et al., Potential of Artemisia annua Bioactives as Antiviral Agents Against SARS-CoV-2 and Other Health Complications, Pharmaceuticals, doi:10.3390/ph18121904
This review highlights Artemisia annua, a medicinal plant which grows in the Kingdom of Saudi Arabia, known for its abundant therapeutic properties. A. annua serves as a rich source of various bioactive compounds, including sesquiterpenoid lactones, flavonoids, phenolic acids, and coumarins. Among these, artemisinin and its derivatives are most extensively studied due to their potent antimalarial properties. Extracts and isolates of A. annua have demonstrated a range of therapeutic effects, such as antioxidant, anticancer, anti-inflammatory, antimicrobial, antimalarial, and antiviral properties. Given its significant antiviral activity, A. annua could be investigated for the development of new nutraceutical bioactive compounds to combat SARS-CoV-2. Artificial Intelligence (AI) can assist in drug discovery by optimizing the selection of more effective and safer natural bioactives, including artemisinin. It can also predict potential clinical outcomes through in silico modeling of protein–ligand interactions. In silico studies have reported that artemisinin and its derivatives possess a strong ability to bind with the Lys353 and Lys31 hotspots of the SARS-CoV-2 spike protein, demonstrating their effective antiviral effects against COVID-19. This integrated approach may accelerate the identification of effective and safer natural antiviral agents against COVID-19.
Rafiq et al., A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products, Molecules, doi:10.3390/molecules28124860
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2—the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins—were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.