Chromocarb for COVID-19
Chromocarb has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Identification of Potential FDA-Approved Inhibitors of SARS-CoV-2 Helicase Through a Multistep In Silico Approach: A Promising Prospect for COVID-19 Treatment, Medicinal Chemistry, doi:10.2174/0115734064318640241112071225
,
Introduction: In this research aiming at combating COVID-19, we employed advanced computer-based methods to identify potential inhibitors of SARS-CoV-2 helicase from a pool of 3009 clinical and FDA-approved drugs. Method: To narrow down the candidates, we focused on VXG, the helicase’s co-crystallized ligand, and sought compounds with chemical structures akin to VXG within the examined drugs. The initial phase of our study involved molecular fingerprinting in addition to structure similarity studies. Results: Once the compounds most closely resembling VXG (29 compounds) were identified, we conducted various studies to investigate and validate the binding potential of these selected compounds to the protein’s active site. The subsequent phase included molecular docking, molecular dynamic (MD) simulations, and MM-PBSA studies against the SARS-CoV-2 helicase (PDB ID: 5RMM). Conclusion: Based on our analyses, we identified nine compounds with promising potential as SARS-CoV-2 helicase inhibitors, namely aniracetam, aspirin, chromocarb, cinnamic acid, lawsone, loxoprofen, phenylglyoxylic acid, and antineoplaston A10. The findings of this research help the scientific community to further investigate these compounds, both in vitro and in vivo.
Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, resources and discoveries, Briefings in Bioinformatics, doi:10.1093/bib/bbab113
,
AbstractTo attain promising pharmacotherapies, researchers have applied drug repurposing (DR) techniques to discover the candidate medicines to combat the coronavirus disease 2019 (COVID-19) outbreak. Although many DR approaches have been introduced for treating different diseases, only structure-based DR (SBDR) methods can be employed as the first therapeutic option against the COVID-19 pandemic because they rely on the rudimentary information about the diseases such as the sequence of the severe acute respiratory syndrome coronavirus 2 genome. Hence, to try out new treatments for the disease, the first attempts have been made based on the SBDR methods which seem to be among the proper choices for discovering the potential medications against the emerging and re-emerging infectious diseases. Given the importance of SBDR approaches, in the present review, well-known SBDR methods are summarized, and their merits are investigated. Then, the databases and software applications, utilized for repurposing the drugs against COVID-19, are introduced. Besides, the identified drugs are categorized based on their targets. Finally, a comparison is made between the SBDR approaches and other DR methods, and some possible future directions are proposed.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.