Cedeodarin for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Cedeodarin may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed cedeodarin in detail.
, COMPUTATIONAL IDENTIFICATION OF SELECTED BIOACTIVE COMPOUNDS FROM CEDRUS DEODARA AS INHIBITORS AGAINST SARS-COV-2 MAIN PROTEASE: A PHARMACOINFORMATICS STUDY, INDIAN DRUGS, doi:10.53879/id.61.02.13859
Amid the ongoing Covid-19 pandemic, the quest for potent antiviral treatments intensifies. This study focuses on the potential of bioactive compounds from the Himalayan cedar Cedrus deodara against the SARS-CoV-2 virus. Specifically targeting the main protease (MPro) and spike protein, the study employs docking trials and molecular dynamics simulations. Compounds such as quercetin, dihydrodehydrodiconiferyl alcohol, and cedeodarin exhibit notable binding affinity, surpassing the reference drug favipiravir. Molecular dynamics simulations affirm the stability of these complexes throughout the simulation period. While these findings underscore promising interactions, it is crucial to emphasize the need for further research and experimental validation to fully explore the therapeutic capabilities of C. deodara in combatting Covid-19.