Carboxymycobactin T for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Carboxymycobactin T may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed carboxymycobactin T in detail.
, Network biology and bioinformatics-based framework to identify the impacts of SARS-CoV-2 infections on lung cancer and tuberculosis, medRxiv, doi:10.1101/2024.09.10.24313452
The severe acute respiratory syndrome coronavirus 2 (SARSCoV 2) is a coronavirus variation responsible for COVID19, the respiratory disease that triggered the COVID19 pandemic. The primary aim of our study is to elucidate the complex network of interactions between SARS CoV 2, tuberculosis, and lung cancer employing a bioinformatics and network biology approach. Lung cancer is the leading cause of significant illness and death connected to cancer worldwide. Tuberculosis (TB) is a prevalent medical condition induced by the Mycobacterium bacteria. It mostly affects the lungs but may also have an influence on other areas of the body. Coronavirus disease (COVID19) causes a risk of respiratory complications between lung cancer and tuberculosis. SARSCoV 2 impacts the lower respiratory system and causes severe pneumonia, which can significantly increase the mortality risk in individuals with lung cancer. We conducted transcriptome analysis to determine molecular biomarkers and common pathways in lung cancer, TB, and COVID19, which provide understanding into the association of SARSCoV 2 to lung cancer and tuberculosis. Based on the compatible RNA-seq data, our research employed GREIN and NCBI's Gene Expression Omnibus (GEO) to perform differential gene expression analysis. Our study exploited three RNAseq datasets from the Gene Expression Omnibus (GEO) GSE171110, GSE89403, and GSE81089 to identify distinct relationships between differentially expressed genes (DEGs) in SARSCoV 2, tuberculosis, and lung cancer. We identified 30 common genes among SARSCoV 2, tuberculosis, and lung cancer (25 upregulated genes and 5 downregulated genes). We analyzed the following five databases: WikiPathway, KEGG, Bio Carta, Elsevier Pathway and Reactome. Using Cytohubba's MCC and Degree methods, We determined the top 15 hub genes resulting from the PPI interaction. These hub genes can serve as potential biomarkers, leading to novel treatment strategies for disorders under investigation. Transcription factors (TFs) and microRNAs (miRNAs) were identified as the molecules that control the differentially expressed genes (DEGs) of interest, either during transcription or after transcription. We identified 35 prospective therapeutic compounds that form significant differentially expressed genes (DEGs) in SARSCoV 2, lung cancer, and tuberculosis, which could potentially serve as medications. We hypothesized that the potential medications that emerged from this investigation may have therapeutic benefits.