Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Calcomine scarlet 3b for COVID-19

Calcomine scarlet 3b has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Bojadzic et al., Small-Molecule In Vitro Inhibitors of the Coronavirus Spike – ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2, bioRxiv, doi:10.1101/2020.10.22.351056
ABSTRACTInhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and ACE2, which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable / less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound-library that is focused on the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel drug-like compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50s of 0.2-3.0 μM); whereas, control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs identified here bind SARS-CoV-2-S and not ACE2. Selected promising compounds inhibited the entry of a SARS-CoV-2-S expressing pseudovirus into ACE2-expressing cells in concentration-dependent manner with low micromolar IC50s (6-30 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for coronavirus attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit