Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Broussoflavonol F for COVID-19

Broussoflavonol F has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Siregar et al., Exploring Therapeutic Potential of Nutraceutical Compounds from Propolis on MAPK1 Protein Using Bioinformatics Approaches as Anti-Coronavirus Disease 2019 (COVID-19), BIO Web of Conferences, doi:10.1051/bioconf/20248800007
This study explores the potential of propolis, a natural substance, as a gene therapy for treating COVID-19. Despite the advent of COVID-19 vaccines, their side effects pose new health challenges. Utilizing network pharmacology, this research identifies propolis compounds through various databases and assesses their ability to target proteins associated with COVID-19. MAPK1 emerges as a potential therapeutic target, and molecular docking reveals Broussoflavonol F, Glyasperin A, and Sulabiroins as promising compounds with strong binding affinities, i.e.,- 9.0, -9.0, and -8.8 kcal/mol, respectively, exceeding the native ligand (-7.2 kcal/mol). Molecular Dynamics displays stable complex behavior, with backbone RMSD values consistently below 4 Angstroms and RMSF simulations showing minimal fluctuations within ±2 Angstroms error. Moreover, MM-PBSA analysis further supports the strong binding of Broussoflavonol F, Glyasperin A, and Sulabiroins A, with relative binding energies of -122.82±89.65, 131.48±95.39, and -155.97±111,37 kJ/mol, respectively. These results indicate that propolis has potential as an anti-COVID-19 agent, primarily through inhibiting the MAPK1 pathway. However, further research is needed to validate these results and develop practical applications for COVID-19 therapy. This study underscores the significance of network pharmacology and computational models in understanding propolis mechanisms, offering potential directions for future research and treatment strategies against COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit