Bisdemethoxycurcumin for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Bisdemethoxycurcumin may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed bisdemethoxycurcumin in detail.
, Structure-Based Design and In-Silico Evaluation of Computationally Proposed Curcumin Derivatives as Potential Inhibitors of the Coronaviral PLpro Enzymes, Pharmaceuticals, doi:10.3390/ph18060798
Background/Objectives: Highly pathogenic coronaviruses (CoVs), including SARS-CoV, MERS-CoV, and SARS-CoV-2, continue to pose a significant threat to global public health. Therefore, this situation highlights the urgent need for effective broad-spectrum antiviral agents. Curcumin, a naturally occurring polyphenol known for its antiviral and anti-inflammatory properties, faces limitations such as poor bioavailability and rapid metabolic degradation, restricting its practical therapeutic application. Methods: To address these limitations, this study introduces a novel design strategy aimed at 42 new curcumin derivatives with improved pharmacokinetic profiles, specifically targeting the conserved coronavirus enzyme papain-like protease (PLpro). A comprehensive in silico evaluation was performed, including ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) analysis, molecular docking, molecular dynamics (MD) simulations, and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculations. Results: Extensive pharmacokinetic and toxicological assessments (ADMET analyses) identified 19 derivatives exhibiting optimal drug-like characteristics according to Lipinski’s Rule of Five (Ro5). Molecular docking analyses demonstrated that these novel derivatives possess significantly enhanced binding affinities to PLpro enzymes from SARS-CoV, MERS-CoV, and SARS-CoV-2 compared to standard antiviral agents and natural curcumin. Further validation through MD simulations and MM/PBSA calculations confirmed the structural stability and robust interactions of the most promising derivatives within the SARS-CoV PLpro active site. Conclusions: The results of this study provide essential structural and functional insights, reinforcing the potential of these newly developed curcumin derivatives as potent, broad-spectrum antiviral agents effective against current and future coronavirus threats.
, A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products, Molecules, doi:10.3390/molecules28124860
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2—the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins—were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.