Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

BHH-VHL TMPRSS2 PROTAC d1 for COVID-19

BHH-VHL TMPRSS2 PROTAC d1 has been reported as potentially beneficial for COVID-19 in the following study. We have not reviewed BHH-VHL TMPRSS2 PROTAC d1 in detail.
COVID-19 involves the interplay of over 200 viral and host proteins and factors providing many therapeutic targets. Scientists have proposed over 10,000 potential treatments. c19early.org analyzes 170+ treatments.
Jin et al., PROTACs in Antivirals: Current Advancements and Future Perspectives, Molecules, doi:10.3390/molecules30163402
Proteolysis-targeting chimera (PROTAC) technology has demonstrated remarkable progress in tumor therapy, attributed to its unique capability of catalytically degrading “undruggable” targets. In the context of the ongoing global health threat posed by the Coronavirus Disease 2019 (COVID-19) pandemic, the application scope of PROTAC technology has been gradually extended to the field of antiviral research. Unlike traditional small molecule inhibitors, PROTAC employs an “event-driven” mechanism to achieve ubiquitination-mediated degradation of target proteins. This approach holds great promise in addressing challenges such as drug resistance, targeting host-dependent factors, and high-mutagenic viral proteins. This article provides a comprehensive review of the application progress of PROTAC technology in antiviral therapy, with a particular emphasis on successful cases across a range of viral pathogens, including Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), influenza virus, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Additionally, it delves into the challenges encountered in this field and ponders future development directions. Through the integration of the latest research findings, this article proposes a dual-target degradation strategy based on the host–pathogen interaction interface. These proposals aim to offer theoretical support for the clinical translation of antiviral PROTACs.
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit