Beta-27-D09 Fab for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Beta-27-D09 Fab may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed Beta-27-D09 Fab in detail.
, Computational redesign of Beta-27 Fab with substantially better predicted binding affinity to the SARS-CoV-2 Omicron variant than human ACE2 receptor, Scientific Reports, doi:10.1038/s41598-023-42442-1
AbstractDuring the COVID-19 pandemic, SARS-CoV-2 has caused large numbers of morbidity and mortality, and the Omicron variant (B.1.1.529) was an important variant of concern. To enter human cells, the receptor-binding domain (RBD) of the S1 subunit of SARS-CoV-2 (SARS-CoV-2-RBD) binds to the peptidase domain (PD) of Angiotensin-converting enzyme 2 (ACE2) receptor. Disrupting the binding interactions between SARS-CoV-2-RBD and ACE2-PD using neutralizing antibodies is an effective COVID-19 therapeutic solution. Previous study found that Beta-27 Fab, which was obtained by digesting the full IgG antibodies that were isolated from a patient infected with SARS-CoV-2 Beta variant, can neutralize Victoria, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) variants. This study employed computational protein design and molecular dynamics (MD) to investigate and enhance the binding affinity of Beta-27 Fab to SARS-CoV-2-RBD Omicron variant. MD results show that five best designed Beta-27 Fabs (Beta-27-D01 Fab, Beta-27-D03 Fab, Beta-27-D06 Fab, Beta-27-D09 Fab and Beta-27-D10 Fab) were predicted to bind to Omicron RBD in the area, where ACE2 binds, with significantly better binding affinities than Beta-27 Fab and ACE2. Their enhanced binding affinities are mostly caused by increased binding interactions of CDR L2 and L3. They are promising candidates that could potentially be employed to disrupt the binding between ACE2 and Omicron RBD.