Bamlanivimab for COVID-19
Bamlanivimab has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Antiviral Therapy of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms24108867
,
Since the beginning of the COVID-19 pandemic, the scientific community has focused on prophylactic vaccine development. In parallel, the experience of the pharmacotherapy of this disease has increased. Due to the declining protective capacity of vaccines against new strains, as well as increased knowledge about the structure and biology of the pathogen, control of the disease has shifted to the focus of antiviral drug development over the past year. Clinical data on safety and efficacy of antivirals acting at various stages of the virus life cycle has been published. In this review, we summarize mechanisms and clinical efficacy of antiviral therapy of COVID-19 with drugs based on plasma of convalescents, monoclonal antibodies, interferons, fusion inhibitors, nucleoside analogs, and protease inhibitors. The current status of the drugs described is also summarized in relation to the official clinical guidelines for the treatment of COVID-19. In addition, here we describe innovative drugs whose antiviral effect is provided by antisense oligonucleotides targeting the SARS-CoV-2 genome. Analysis of laboratory and clinical data suggests that current antivirals successfully combat broad spectra of emerging strains of SARS-CoV-2 providing reliable defense against COVID-19.
DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, Viruses, doi:10.3390/v15040820
,
Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide’s structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.