Astersaponin I for COVID-19

Astersaponin I may be beneficial for COVID-19 according to the studies below. COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 11,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed astersaponin I in detail.
Wan et al., The Emerging Promise of Pentacyclic Triterpenoid Derivatives as Novel Antiviral Agents Against SARS-CoV-2 Variants, Molecules, doi:10.3390/molecules31020325
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids (PTs), a structurally varied group of compounds derived from plants, exhibit both antiviral and anti-inflammatory activities, making them attractive candidates for further therapeutic development. These natural products, along with their saponin derivatives, show broad-spectrum inhibitory effects against multiple SARS-CoV-2 variants (from Alpha to Omicron) via interactions with multiple targets, such as the spike protein, main protease (Mpro), RNA-dependent RNA polymerase (RdRp), and inflammatory signaling pathways. This review consolidates recent findings on PTs and their saponins, emphasizing their influence on the key structural features required for inhibiting viral attachment, membrane fusion, reverse transcription, and protease function. We systematically summarized the structure–activity relationships and their antiviral results of PTs based on different target proteins in existing studies. Furthermore, this work points toward new strategies for designing multi-target PT-based inhibitors with improved efficacy against Omicron and future variants.
England et al., Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, Life, doi:10.3390/life13030617
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world’s health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19’s impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.