Altretamine for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Altretamine may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed altretamine in detail.
, Repurposing of Anti-Cancer Drugs Against Moderate and Severe COVID Infection: A Network-Based Systems Biological Approach, Nigerian Journal of Clinical Practice, doi:10.4103/njcp.njcp_873_23
Background: The COVID-19 pandemic caused by SARS-CoV-2 is an unparalleled health risk, needing fast antiviral medication development. One of the most effective strategies for developing therapies against novel and emerging viruses is drug repurposing. Recently, systems biology approaches toward the discovery of repurposing medications are gaining prominence. Aim: This study aimed to implement a systems biology approach to identify crucial drug targets as well as potential drug candidates against COVID infection. Methods: Our approach utilizes differential gene expression in COVID conditions that enable the construction of a protein-protein interaction (PPI) network. Core clusters were extracted from this network, followed by molecular enrichment analysis. This process identified critical drug targets and potential drug candidates targeting various stages of COVID-19 infection. Results: The network was built using the top 200 differently expressed genes in mild, moderate, and severe COVID-19 infections. Top 3 clusters for each disease condition were identified, representing the core mechanism of the network. Molecular enrichment revealed the majority of the pathways in the mild state were associated with transcription regulation, protein folding, angiogenesis, and cytokine-signaling pathways. Whereas, the enriched pathways in moderate and severe disease states were predominately linked with the immune system and apoptotic processes, which include NF-kappaB signaling, cytokine signaling, TNF-mediated signaling, and oxidative stress-induced cell death. Further analysis identifies 28 potential drugs that can be repurposed to treat moderate and severe COVID-19, most of which are currently used in cancer treatment. Conclusion: Interestingly, some of the proposed drugs have demonstrated inhibitory effects against SARS-CoV-2, as supported by literature evidence. Overall, the drug repurposing method described here will help develop potential antiviral medications to treat emerging COVID strains.