Alpha-amyrin for COVID-19

Alpha-amyrin has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed alpha-amyrin in detail.
Kukina et al., Lipophilic Substances of the Leaves and Inflorescences of Centaurea scabiosa L.: Their Composition and Activity Against the Main Protease of SARS-CoV-2, Molecules, doi:10.3390/molecules30234568
The composition of the lipophilic components of Centaurea scabiosa L. has been studied. The raw material was subjected to extraction with hexane and methyl tert-butyl ether (MTBE) using both exhaustive and sequential schemes for a detailed characterization. The resulting extracts were fractionated into acidic and neutral components via treatment with alkali solutions. The acidic compounds were converted into methyl esters for subsequent gas chromatography–mass spectrometry (GC-MS) analysis, while the neutral unsaponifiable fractions were separated into groups of different polarities using column chromatography on silica gel. This approach enabled the identification of a complex profile of lipophilic substances. In the acidic fractions, aliphatic acids with chain lengths from C10 to C32, including unsaturated variants, were characterized. The neutral fractions revealed over compounds, encompassing n-alkanes, substantial levels of the unsaturated branched hydrocarbon squalene, and a diverse array of oxygenated terpenoids. The latter were mainly represented by highly active triterpene alcohols and ketones belonging to the ursane, oleanane, lupane, and cycloartane types. The sterol composition was dominated by β-sitosterol and accompanied by cholesterol, campesterol, stigmasterol, stigmast-7-en-3-β-ol, fucosterol, and stigmastan-3-β-ol. Bioactivity screening demonstrated that several of the obtained lipophilic extracts, particularly those of lower polarity, exhibited high inhibitory activity against the main protease of SARS-CoV-2, underscoring the potential of C. scabiosa as a valuable source of anti-coronavirus agents.
Lopes et al., Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies, Pharmaceuticals, doi:10.3390/ph15091045
Since it acquired pandemic status, SARS-CoV-2 has been causing all kinds of damage all over the world. More than 6.3 million people have died, and many cases of sequelae are in survivors. Currently, the only products available to most of the world’s population to fight the pandemic are vaccines, which still need improvement since the number of new cases, admissions into intensive care units, and deaths are again reaching worrying rates, which makes it essential to compounds that can be used during infection, reducing the impacts of the disease. Plant metabolites are recognized sources of diverse biological activities and are the safest way to research anti-SARS-CoV-2 compounds. The present study computationally evaluated 55 plant compounds in five SARS-CoV-2 targets such Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA polymerase (RdRp), Papain-Like Protease (PLpro), NSP15 Endoribonuclease, Spike Protein (Protein S or Spro) and human Angiotensin-converting enzyme 2 (ACE-2) followed by in vitro evaluation of their potential for the inhibition of the interaction of the SARS-CoV-2 Spro with human ACE-2. The in silico results indicated that, in general, amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic acid were the compounds with the strongest electronic interaction parameters with the selected targets. Through the data obtained, we can demonstrate that although the indication of individual interaction of plant metabolites with both Spro and ACE-2, the metabolites evaluated were not able to inhibit the interaction between these two structures in the in vitro test. Despite this, these molecules still must be considered in the research of therapeutic agents for treatment of patients affected by COVID-19 since the activity on other targets and influence on the dynamics of viral infection during the interaction Spro x ACE-2 should be investigated.