Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

Alliin for COVID-19

Alliin has been reported as potentially beneficial for COVID-19 in the following studies. We have not reviewed alliin in detail.
COVID-19 involves the interplay of over 200 viral and host proteins and factors providing many therapeutic targets. Scientists have proposed over 10,000 potential treatments. c19early.org analyzes 170+ treatments.
Negru et al., Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases, Current Issues in Molecular Biology, doi:10.3390/cimb47070577
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2.
Singh et al., Virtual Screening of Phytoconstituents in Indian Spices Based on their Inhibitory Potential against SARS-CoV-2, Protein & Peptide Letters, doi:10.2174/0109298665366911250416113831
Background: COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly pathogenic human coronavirus (CoV). For the treatment of COVID-19, various drugs, ayurvedic formulations, used for other diseases, were repurposed. Ayurveda and yoga exhibited a pivotal role in the treatment of COVID-19. Various medicinal plants, including garlic, tulsi, clove, cinnamon, ginger, black pepper, and turmeric, are recommended for the prevention of COVID-19 as immunity boosters along with their antiviral property Objective: In view of the drug repurposing approach, the present work has been initiated with the broader objectives of screening and identification of phytoconstituents of Indian spices against targets, namely furin, 3C-like protease (3CL-PRO), NSP-9 RNA binding protein, papain-like protease, RNA dependent RNA polymerase (RDRP), spike protein concerned with life cycle of SARS-CoV-2 using in-silico tools. Method: The phytoconstituents of Indian spices were screened for interaction with several targets using a molecular docking approach with the help of Discovery Studio 4.5 software. Furthermore, the pharmacokinetic analyses of selected ligands using ADMET and Lipinski’s rule of five were also performed. Result: In the present study, more than 35 active phytoconstituents of Indian spices were screened for interaction with several identified targets of Covid-19 using a molecular docking approach. The ligands, namely morin, gingerol, myristic acid, quercetin, gallic acid, octacosanal, and alliin were found to be the top interacting ligands with the targets analyzed. Conclusion: Based on the present in-silico finding, the active components of spices could be considered for drug-lead compounds against COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit