AF-399/40713777 for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
AF-399/40713777 may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed AF-399/40713777 in detail.
, In Silico Discovery of Small-Molecule Inhibitors Targeting SARS-CoV-2 Main Protease, Molecules, doi:10.3390/molecules28145320
The COVID-19 pandemic has caused severe health threat globally, and novel SARS-Cov-2 inhibitors are urgently needed for antiviral treatment. The main protease (Mpro) of the virus is one of the most effective and conserved targets for anti-SARS-CoV-2 drug development. In this study, we utilized a molecular docking-based virtual screening approach against the conserved catalytic site to identify small-molecule inhibitors of SARS-CoV-2 Mpro. Further biological evaluation helped us identify two compounds, AF-399/40713777 and AI-942/42301830, with moderate inhibitory activity. Besides that, the in silico data, including molecular dynamics (MD) simulation, binding free energy calculations, and AMDET profiles, suggested that these two hits could serve as the starting point for the future development of COVID-19 intervention treatments.