3,5-dicaffeoylquinic acid for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
3,5-dicaffeoylquinic acid may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed 3,5-dicaffeoylquinic acid in detail.
, A Comprehensive Molecular Dynamic Simulation Study of Plant Bioactive
Phytoconstituents as Inhibitors for SARS-CoV-2 Main Protease and Spike
(S) Glycoprotein, Current Computer-Aided Drug Design, doi:10.2174/0115734099285818240626110217
Background: Since the commencement of the COVID-19 pandemic, researchers have been earnestly exploring the capacity of diverse bioactive compounds present in plants to impede the transmission of SARS-CoV-2. Plants have always held a special place in scientific research as invaluable bio-factories capable of producing a diverse array of chemical compounds with promising therapeutic applications. Cichorium intybus is among these plants, known for its rich reservoir of bioactive phytoconstituents with significant potential for variable health benefits. Objective: The current work aims to investigate the antiviral activity of various phytoconstituents against SARS-CoV-2 by inhibiting the main protease (Mpro) (PDB code: 6LU7) and spike (S) glycoprotein receptor binding domain (RBD) to Angiotensin-converting enzyme 2 (ACE2) (PDB code: 6M0J) of SARS-CoV-2 and Omicron main protease (PDB code: 7TOB). Methods: Auto Dock Vina was employed as the docking engine for the evaluation and determination of docking scores. To test whether a chemical satisfies the requirements for an active drug taken orally in humans, the rule of five (Ro5) was calculated. By choosing the proteinligand complex geometry having the highest affinities (highest negative Gibbs' free energy of binding/G), the docking score was calculated. The FDA-recommended antimalarial medications chloroquine and hydroxychloroquine sulfate, Remdesivir, and the antiviral medication nelfinavir were utilized as comparisons. Results: The results demonstrate that as spike glycoprotein inhibitors, crepidiaside B, 3,5-Dicaffeoylquinic acid, 4,5 -Dicaffeoylquinic acid, and crepidiside A performed better than nelfinavir, chloroquine, hydroxychloroquine sulfate, and remdesivir. The sequence of chemical reactivity of the chosen bioactive phytoconstituents, as determined by quantum chemical DFT calculations, was Crepidiside A <Crepidiaside B < 4,5-Dicaffeoylquinic acid < 3,5 -Dicaffeoylqu inic acid. The C=O portions of all isolated compounds favor an electrophilic assault, while the O-H sections are ideal for a nucleophilic attack. Additionally, Homo- Lumo values for the chosen compounds showed a noteworthy and satisfactory profile. Furthermore, the molecular dynamics simulation confirmed the stable nature of protein-ligand interaction and highlighted the amino acid residues implicated in binding. Conclusion: The current investigation discovered bioactive phytoconstituents derived from plants that have the potential to be developed as therapeutic alternatives for COVID-19.
, Stand Up to Stand Out: Natural Dietary Polyphenols Curcumin, Resveratrol, and Gossypol as Potential Therapeutic Candidates against Severe Acute Respiratory Syndrome Coronavirus 2 Infection, Nutrients, doi:10.3390/nu15183885
The COVID-19 pandemic has stimulated collaborative drug discovery efforts in academia and the industry with the aim of developing therapies and vaccines that target SARS-CoV-2. Several novel therapies have been approved and deployed in the last three years. However, their clinical application has revealed limitations due to the rapid emergence of viral variants. Therefore, the development of next-generation SARS-CoV-2 therapeutic agents with a high potency and safety profile remains a high priority for global health. Increasing awareness of the “back to nature” approach for improving human health has prompted renewed interest in natural products, especially dietary polyphenols, as an additional therapeutic strategy to treat SARS-CoV-2 patients, owing to its good safety profile, exceptional nutritional value, health-promoting benefits (including potential antiviral properties), affordability, and availability. Herein, we describe the biological properties and pleiotropic molecular mechanisms of dietary polyphenols curcumin, resveratrol, and gossypol as inhibitors against SARS-CoV-2 and its variants as observed in in vitro and in vivo studies. Based on the advantages and disadvantages of dietary polyphenols and to obtain maximal benefits, several strategies such as nanotechnology (e.g., curcumin-incorporated nanofibrous membranes with antibacterial-antiviral ability), lead optimization (e.g., a methylated analog of curcumin), combination therapies (e.g., a specific combination of plant extracts and micronutrients), and broad-spectrum activities (e.g., gossypol broadly inhibits coronaviruses) have also been emphasized as positive factors in the facilitation of anti-SARS-CoV-2 drug development to support effective long-term pandemic management and control.