3-2A2-4 for COVID-19

3-2A2-4 has been reported as potentially beneficial for COVID-19 in the following studies.
COVID-19 involves the interplay of 350+ viral and host proteins and factors providing many therapeutic targets. Scientists have proposed 10,000+ potential treatments. c19early.org analyzes 210+ treatments. We have not reviewed 3-2A2-4 in detail.
Feng et al., One Thousand SARS-CoV-2 Antibody Structures Reveal Convergent Binding and Near-Universal Immune Escape, bioRxiv, doi:10.1101/2025.08.07.669152
Since the emergence of SARS-CoV-2, understanding how antibodies recognize and adapt to viral evolution has been central to vaccine and therapeutic developments. To date, over 1,100 SARS-CoV-2 antibody structures, 16% of all known antibody-antigen complexes, have been resolved, marking the largest structural biology effort towards a single pathogen. Here, we present a comprehensive analysis of this landmark dataset to investigate the principles of antibody recognition and immune escape. Human immunoglobulins (IgGs) and camelid single-chain antibodies dominate the dataset, collectively mapping 99% of the receptor-binding domain surface. Despite remarkable sequence and conformational diversity, antibodies exhibit striking convergence in their paratope structures, revealing evolutionary constraints in epitope selection. Structural and functional analyses reveal near-universal immune escape of antibodies, including all clinical monoclonals, by advanced variants such as KP3.1.1. On average, over one-third of antibody epitope residues are mutated. These findings support pervasive immune escape, underscoring the need to effectively leverage multi-epitope targeting strategies to achieve durable immunity.
Cui et al., Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants, Viruses, doi:10.3390/v16060900
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.