2,3,5-Trimethyl pyrazine for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
2,3,5-Trimethyl pyrazine may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed 2,3,5-Trimethyl pyrazine in detail.
, Virtual Screening of Phytochemicals in Search of a Potential Drug Candidate for COVID-19: DFT Study and Molecular Docking, COVID-19: Origin, Impact and Management (Part 2), doi:10.2174/9789815165944123010012
The global health pandemic due to COVID-19 caused by SARS-CoV-2, affected and changed the world’s condition drastically. Herein, we evaluated the bioactivity of some phytochemicals as inhibitors against SARS-CoV-2 M provirus (6LU7) using computational models. We reported the optimization of phytochemicals employing density functional theory (DFT) with B3LYP/6-311G+(d,p) level theory. DFT calculations were employed to determine the free energy, dipole moment as well as chemical reactivity descriptors. Molecular docking has been performed against the SARS-CoV-2 M provirus to search the binding affinity and interactions of all compounds with the respective protein. The known drug, Chloroquine of SARS-CoV-2 main protease, was also docked to evaluate its binding affinity. Besides, the data from DFT, the docking studies predicted that flavonoids (Quercetin, Myricetin, Apigenin and Daidzein) have the least binding affinity and might serve as a potent inhibitor against SARS-CoV-2 comparable with the approved medicine, Chloroquine. The high binding affinity of flavonoids was attributed to the presence of hydrogen bonds along with different hydrophobic interactions between the flavonoid and the critical amino acid residues of the receptor. The DFT calculations showed that flavonoids have high.lying HOMO, electrophilicity index and dipole moment. All these parameters could share a different extent to significantly affect the binding affinity of these phytochemicals with active protein sites.