Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchTixagevimab/cilgavimabTixagev../c.. (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

AZD7442 (Tixagevimab/Cilgavimab) for Post-exposure Prophylaxis of Symptomatic COVID-19

Levin et al., Clinical Infectious Diseases, doi:10.1093/cid/ciac899 (date from FDA disclosure of results), STORM CHASER, NCT04625972
Dec 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Symp. case 42% Improvement Relative Risk Symp. case (b) 33% primary Tixagevimab/c..  STORM CHASER  Prophylaxis  DB RCT Is prophylaxis with tixagevimab/cilgavimab beneficial for COVID-19? Double-blind RCT 1,121 patients in the USA (December 2020 - March 2021) Fewer symptomatic cases with tixagevimab/cilgavimab (not stat. sig., p=0.064) c19early.org Levin et al., Clinical Infectious Dise.., Dec 2021 Favorstixagevimab/ci.. Favorscontrol 0 0.5 1 1.5 2+
38th treatment shown to reduce risk in May 2022, now with p = 0.000029 from 17 studies, recognized in 31 countries. Efficacy is variant dependent.
Lower risk for mortality, hospitalization, and cases.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
1,121 patient PEP RCT showing lower symptomatic cases with tixagevimab/cilgavimab, without statistical significance.
Efficacy is variant dependent. In Vitro research suggests a lack of efficacy for omicron BA.2.75.2, BA.4.6, BQ.1.11, BA.5, BA.2.75, XBB2,3, XBB.1.53, ХВВ.1.9.13, XBB.1.9.3, XBB.1.5.24, XBB.1.16, XBB.2.9, BQ.1.1.45, CL.1, and CH.1.14.
risk of symptomatic case, 41.7% lower, RR 0.58, p = 0.06, treatment 27 of 749 (3.6%), control 23 of 372 (6.2%), NNT 39, extended data cutoff.
risk of symptomatic case, 32.8% lower, RR 0.67, p = 0.23, treatment 23 of 749 (3.1%), control 17 of 372 (4.6%), NNT 67, primary outcome.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Levin et al., 8 Dec 2021, Double Blind Randomized Controlled Trial, placebo-controlled, USA, peer-reviewed, mean age 46.0, 21 authors, study period 2 December, 2020 - 19 March, 2021, trial NCT04625972 (history) (STORM CHASER). Contact: mark.esser@astrazeneca.com.
This PaperTixagev../c..All
AZD7442 (Tixagevimab/Cilgavimab) for Post-Exposure Prophylaxis of Symptomatic Coronavirus Disease 2019
MD Myron J Levin, MD Andrew Ustianowski, MSc Steven Thomas, PhD Alison Templeton, PhD Yuan Yuan, PhD Seth Seegobin, PhD Catherine F Houlihan, MD Ibrahim Menendez-Perez, MBBS Simon Pollett, PhD Rosalinda H Arends, PhD Rohini Beavon, MSc Kanika Dey, MD Pedro Garbes, PhD Elizabeth J Kelly, PhD Gavin C K W Koh, MD Stefan Ivanov, MD Karen A Near, PhD Audrey Sharbaugh, PhD Katie Streicher, PhD Menelas N Pangalos, PhD Mark T Esser
Clinical Infectious Diseases, doi:10.1093/cid/ciac899
Background: We report primary results of a phase 3 trial of AZD7442 (tixagevimab/cilgavimab) for post-exposure prophylaxis to prevent symptomatic coronavirus disease 2019 Methods: Adults without prior SARS-CoV-2 infection or COVID-19 vaccination were enrolled within 8 days of exposure to a SARS-CoV-2-infected individual and randomized 2:1 to a single 300-mg AZD7442 dose (one 1.5-mL intramuscular injection each of tixagevimab and cilgavimab consecutively) or placebo. Primary endpoints were safety and first post-dose SARS-CoV-2 reverse-transcription-polymerase-chain-reaction (RT-PCR)-positive symptomatic COVID-19 event before day 183. Results: 1121 participants were randomized and dosed (mean age 46 years; 49% females; AZD7442, n=749; placebo, n=372). Median (range) follow-up was 49 (5-115) and 48 (20-113) days for AZD7442 and placebo, respectively. Adverse events occurred in 162/749 (21.6%) and 111/372 (29.8%) participants with AZD7442 and placebo, respectively, mostly mild/moderate. RT-PCR-positive symptomatic COVID-19 occurred in 23/749 (3.1%) and 17/372 (4.6%) AZD7442-and placebo-treated participants, respectively (relative risk reduction 33.3%; 95% confidence interval [CI] -25.9 to 64.7; P=.21). In predefined subgroup analyses of 1073 (96%) participants who were SARS-CoV-2 RT-PCR-negative (n=974 [87%]) or missing an RT-PCR result (n=99 [9%]) at baseline, AZD7442 reduced RT-PCR-positive symptomatic COVID-19 by 73.2% (95% CI 27.1 to 90.1) versus placebo. Conclusions: This study did not meet the primary efficacy endpoint of post-exposure prevention of symptomatic COVID-19 with AZD7442 versus placebo. However, predefined analysis of participants who were SARS-CoV-2 RT-PCR-negative or missing an RT-PCR result at baseline support a role for AZD7442 in preventing symptomatic COVID-19.
References
Astrazeneca, Update to Evusheld recommended dosage regimen for pre-exposure prophylaxis of COVID-19
Bader, Mckinsey, Postexposure prophylaxis for common infectious diseases, Am Fam Physician
Bernal, Andrews, Gower, Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study, Bmj
Brandal, Macdonald, Veneti, Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to, Euro Surveill
Burugorri-Pierre, Lafuente-Lafuente, Oasi, Investigation of an outbreak of COVID-19 in a French nursing home with most residents vaccinated, JAMA Netw Open
Cao, Yisimayi, Jian, 2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection, Nature
Conte, Golzarri-Arroyo, Tixagevimab and Cilgavimab (Evusheld) boosts antibody levels to SARS-CoV-2 in patients with multiple sclerosis on b-cell depleters, Mult Scler Relat Disord
De Gier, Andeweg, Backer, Vaccine effectiveness against SARS-CoV-2 transmission to household contacts during dominance of Delta variant (B.1.617.2), the Netherlands, Euro Surveill
Dejnirattisai, Huo, Zhou, SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell
Dong, Zost, Greaney, Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail, Nat Microbiol
Ikematsu, Hayden, Kawaguchi, Baloxavir marboxil for prophylaxis against influenza in household contacts, N Engl J Med
Iketani, Liu, Guo, Antibody evasion properties of SARS-CoV-2 Omicron sublineages, Nature
Lachiewicz, Srinivas, Varicella-zoster virus post-exposure management and prophylaxis: A review, Preventive medicine reports
Lauer, Grantz, Bi, The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application, Ann Int Med
Levin, Ustianowski, Wit, Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of Covid-19, N Engl J Med
Loo, Cai, Ren, The SARS-CoV-2 monoclonal antibody combination AZD7442 (tixagevimab/cilgavimab) does not interfere with COVID-19 vaccine-induced immunogenicity ECCMID
Loo, Mctamney, Arends, The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans, Sci Transl Med
Montgomery, Hobbs, Padilla, Efficacy and safety of intramuscular administration of tixagevimab-cilgavimab for early outpatient treatment of COVID-19 (TACKLE): a phase 3, randomised, double-blind, placebo-controlled trial, Lancet Respir Med
O'brien, Forleo-Neto, Musser, Subcutaneous REGEN-COV antibody combination to prevent Covid-19, N Engl J Med
O'brien, Forleo-Neto, Sarkar, Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection: A Randomized Clinical Trial, Jama
Petros, Turcinovic, Welch, Early introduction and rise of the Omicron SARS-CoV-2 variant in highly vaccinated university populations, Clin Infect Dis, doi:10.1093/cid/ciac1413
Pritchard, Matthews, Stoesser, Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom, Nat Med
Shitrit, Zuckerman, Mor, Gottesman, Chowers, Nosocomial outbreak caused by the SARS-CoV-2 Delta variant in a highly vaccinated population, Israel, July 2021, Euro Surveill
Singanayagam, Hakki, Dunning, Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study, Lancet Infect Dis
Tuekprakhon, Nutalai, Dijokaite-Guraliuc, Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum, Cell
Vanblargan, Errico, Halfmann, An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies, Nat Med
Young-Xu, Epstein, Marconi, Tixagevimab/Cilgavimab for Prevention of COVID-19 during the Omicron Surge: Retrospective Analysis of National VA Electronic Data, medRxiv
Zhou, Wang, Misasi, Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529, Science
Zost, Gilchuk, Case, Potently neutralizing and protective human antibodies against SARS-CoV-2, Nature
Zost, Gilchuk, Chen, Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein, Nat Med
{ 'indexed': { 'date-parts': [[2022, 11, 22]], 'date-time': '2022-11-22T05:58:08Z', 'timestamp': 1669096688031}, 'reference-count': 0, 'publisher': 'Oxford University Press (OUP)', 'license': [ { 'start': { 'date-parts': [[2022, 11, 22]], 'date-time': '2022-11-22T00:00:00Z', 'timestamp': 1669075200000}, 'content-version': 'am', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title>\n' ' <jats:sec>\n' ' <jats:title>Background</jats:title>\n' ' <jats:p>We report primary results of a phase 3 trial of AZD7442 ' '(tixagevimab/cilgavimab) for post-exposure prophylaxis to prevent symptomatic coronavirus ' 'disease 2019 (COVID-19)</jats:p>\n' ' </jats:sec>\n' ' <jats:sec>\n' ' <jats:title>Methods</jats:title>\n' ' <jats:p>Adults without prior SARS-CoV-2 infection or COVID-19 vaccination ' 'were enrolled within 8 days of exposure to a SARS-CoV-2–infected individual and randomized ' '2:1 to a single 300-mg AZD7442 dose (one 1.5-mL intramuscular injection each of tixagevimab ' 'and cilgavimab consecutively) or placebo. Primary endpoints were safety and first post-dose ' 'SARS-CoV-2 reverse-transcription–polymerase-chain-reaction (RT-PCR)–positive symptomatic ' 'COVID-19 event before day 183.</jats:p>\n' ' </jats:sec>\n' ' <jats:sec>\n' ' <jats:title>Results</jats:title>\n' ' <jats:p>1121 participants were randomized and dosed (mean age 46 years; 49% ' 'females; AZD7442, n=749; placebo, n=372). Median (range) follow-up was 49 (5–115) and 48 ' '(20–113) days for AZD7442 and placebo, respectively. Adverse events occurred in 162/749 ' '(21.6%) and 111/372 (29.8%) participants with AZD7442 and placebo, respectively, mostly ' 'mild/moderate. RT-PCR–positive symptomatic COVID-19 occurred in 23/749 (3.1%) and 17/372 ' '(4.6%) AZD7442- and placebo-treated participants, respectively (relative risk reduction ' '33.3%; 95% confidence interval [CI] –25.9 to 64.7; P=.21). In predefined subgroup analyses of ' '1073 (96%) participants who were SARS-CoV-2 RT-PCR–negative (n=974 [87%]) or missing an ' 'RT-PCR result (n=99 [9%]) at baseline, AZD7442 reduced RT-PCR–positive symptomatic COVID-19 ' 'by 73.2% (95% CI 27.1 to 90.1) versus placebo.</jats:p>\n' ' </jats:sec>\n' ' <jats:sec>\n' ' <jats:title>Conclusions</jats:title>\n' ' <jats:p>This study did not meet the primary efficacy endpoint of ' 'post-exposure prevention of symptomatic COVID-19 with AZD7442 versus placebo. However, ' 'predefined analysis of participants who were SARS-CoV-2 RT-PCR–negative or missing an RT-PCR ' 'result at baseline support a role for AZD7442 in preventing symptomatic COVID-19.</jats:p>\n' ' </jats:sec>', 'DOI': '10.1093/cid/ciac899', 'type': 'journal-article', 'created': { 'date-parts': [[2022, 11, 22]], 'date-time': '2022-11-22T03:59:20Z', 'timestamp': 1669089560000}, 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'AZD7442 (Tixagevimab/Cilgavimab) for Post-exposure Prophylaxis of Symptomatic COVID-19', 'prefix': '10.1093', 'author': [ { 'given': 'Myron J', 'family': 'Levin', 'sequence': 'first', 'affiliation': [ { 'name': 'University of Colorado Denver School of Medicine , Aurora, ' 'Colorado , USA'}]}, { 'given': 'Andrew', 'family': 'Ustianowski', 'sequence': 'additional', 'affiliation': [{'name': 'North Manchester General Hospital , Manchester , United Kingdom'}]}, { 'given': 'Steven', 'family': 'Thomas', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biometrics, Vaccines and Immune Therapies, BioPharmaceuticals ' 'R&D, AstraZeneca , Gaithersburg, Maryland , USA'}]}, { 'given': 'Alison', 'family': 'Templeton', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biometrics, Vaccines and Immune Therapies, BioPharmaceuticals ' 'R&D , AstraZeneca, Cambridge , United Kingdom'}]}, { 'given': 'Yuan', 'family': 'Yuan', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biometrics, Vaccines and Immune Therapies, BioPharmaceuticals ' 'R&D, AstraZeneca , Gaithersburg, Maryland , USA'}]}, { 'given': 'Seth', 'family': 'Seegobin', 'sequence': 'additional', 'affiliation': [ { 'name': 'Biometrics, Vaccines and Immune Therapies, BioPharmaceuticals ' 'R&D , AstraZeneca, Cambridge , United Kingdom'}]}, { 'given': 'Catherine F', 'family': 'Houlihan', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Clinical Virology, UCL Hospitals NHS Foundation ' 'Trust , London , United Kingdom'}, { 'name': 'Department of Infection and Immunity, University College London ' ', London , United Kingdom'}]}, { 'given': 'Ibrahim', 'family': 'Menendez-Perez', 'sequence': 'additional', 'affiliation': [{'name': 'Project 4 Research , Miami, Florida , USA'}]}, { 'given': 'Simon', 'family': 'Pollett', 'sequence': 'additional', 'affiliation': [ { 'name': 'Infectious Disease Clinical Research Program, Department of ' 'Preventive Medicine and Biostatistics, Uniformed Services ' 'University of the Health Sciences , Bethesda, Maryland , USA'}, { 'name': 'Henry M. Jackson Foundation for the Advancement of Military ' 'Medicine, Inc. , Bethesda, Maryland , USA'}]}, { 'given': 'Rosalinda H', 'family': 'Arends', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Pharmacology and Quantitative Pharmacology, Vaccines ' 'and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca , ' 'Gaithersburg, Maryland , USA'}]}, { 'given': 'Rohini', 'family': 'Beavon', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Cambridge , United ' 'Kingdom'}]}, { 'given': 'Kanika', 'family': 'Dey', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Gaithersburg, Maryland , ' 'USA'}]}, { 'given': 'Pedro', 'family': 'Garbes', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Gaithersburg, Maryland , ' 'USA'}]}, { 'given': 'Elizabeth J', 'family': 'Kelly', 'sequence': 'additional', 'affiliation': [ { 'name': 'Translational Medicine, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Gaithersburg, Maryland , ' 'USA'}]}, { 'given': 'Gavin C K W', 'family': 'Koh', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Cambridge , United ' 'Kingdom'}]}, { 'given': 'Stefan', 'family': 'Ivanov', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Gothenburg , Sweden'}]}, { 'given': 'Karen A', 'family': 'Near', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Gaithersburg, Maryland , ' 'USA'}]}, { 'given': 'Audrey', 'family': 'Sharbaugh', 'sequence': 'additional', 'affiliation': [ { 'name': 'Clinical Development, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Durham, North Carolina , ' 'USA'}]}, { 'given': 'Katie', 'family': 'Streicher', 'sequence': 'additional', 'affiliation': [ { 'name': 'Translational Medicine, Vaccines and Immune Therapies, ' 'BioPharmaceuticals R&D, AstraZeneca , Gaithersburg, Maryland , ' 'USA'}]}, { 'given': 'Menelas N', 'family': 'Pangalos', 'sequence': 'additional', 'affiliation': [ { 'name': 'BioPharmaceuticals R&D, AstraZeneca , Cambridge , United ' 'Kingdom'}]}, { 'given': 'Mark T', 'family': 'Esser', 'sequence': 'additional', 'affiliation': [ { 'name': 'Vaccines and Immune Therapies, BioPharmaceuticals R&D, ' 'AstraZeneca , Gaithersburg, Maryland , USA'}]}], 'member': '286', 'published-online': {'date-parts': [[2022, 11, 22]]}, 'container-title': 'Clinical Infectious Diseases', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://academic.oup.com/cid/advance-article-pdf/doi/10.1093/cid/ciac899/47174975/ciac899.pdf', 'content-type': 'application/pdf', 'content-version': 'am', 'intended-application': 'syndication'}, { 'URL': 'https://academic.oup.com/cid/advance-article-pdf/doi/10.1093/cid/ciac899/47174975/ciac899.pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 11, 22]], 'date-time': '2022-11-22T03:59:21Z', 'timestamp': 1669089561000}, 'score': 1, 'resource': { 'primary': { 'URL': 'https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciac899/6835900'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2022, 11, 22]]}, 'references-count': 0, 'URL': 'http://dx.doi.org/10.1093/cid/ciac899', 'relation': {}, 'ISSN': ['1058-4838', '1537-6591'], 'subject': ['Infectious Diseases', 'Microbiology (medical)'], 'published': {'date-parts': [[2022, 11, 22]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit