DOI record:
{
"DOI": "10.1007/82_2024_268",
"ISSN": [
"0070-217X",
"2196-9965"
],
"URL": "http://dx.doi.org/10.1007/82_2024_268",
"assertion": [
{
"group": {
"label": "Chapter History",
"name": "ChapterHistory"
},
"label": "First Online",
"name": "first_online",
"order": 1,
"value": "11 August 2024"
}
],
"author": [
{
"affiliation": [],
"family": "Focosi",
"given": "Daniele",
"sequence": "first"
}
],
"container-title": "Current Topics in Microbiology and Immunology",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2024,
8,
10
]
],
"date-time": "2024-08-10T13:04:12Z",
"timestamp": 1723295052000
},
"deposited": {
"date-parts": [
[
2024,
8,
10
]
],
"date-time": "2024-08-10T13:04:29Z",
"timestamp": 1723295069000
},
"indexed": {
"date-parts": [
[
2024,
8,
11
]
],
"date-time": "2024-08-11T00:28:19Z",
"timestamp": 1723336099552
},
"is-referenced-by-count": 0,
"issued": {
"date-parts": [
[
2024
]
]
},
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1007/82_2024_268",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1007",
"published": {
"date-parts": [
[
2024
]
]
},
"published-online": {
"date-parts": [
[
2024,
8,
11
]
]
},
"published-print": {
"date-parts": [
[
2024
]
]
},
"publisher": "Springer Berlin Heidelberg",
"publisher-location": "Berlin, Heidelberg",
"reference": [
{
"DOI": "10.1056/NEJMoa2033130",
"doi-asserted-by": "publisher",
"key": "268_CR1",
"unstructured": "ACTIV-3/TICO LY-CoV555 Study Group (2020) A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med 384(10):905–914. https://doi.org/10.1056/NEJMoa2033130"
},
{
"key": "268_CR2",
"unstructured": "ACTIV-3: Therapeutics for Inpatients With COVID-19—Full Text View—ClinicalTrials.gov"
},
{
"DOI": "10.1001/jamanetworkopen.2022.28997",
"doi-asserted-by": "publisher",
"key": "268_CR3",
"unstructured": "Anderson TS, O’Donoghue A, Mechanic O, Dechen T, Stevens J (2022) Administration of anti–SARS-CoV-2 monoclonal antibodies after US food and drug administration deauthorization. JAMA Netw Open 5(8):e2228997-e. https://doi.org/10.1001/jamanetworkopen.2022.28997"
},
{
"key": "268_CR4",
"unstructured": "AZD7442 reduced risk of developing severe COVID-19 or death in TACKLE Phase III outpatient treatment trial (2022). Accessed online at https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-covid-outpatients.html on 22 Feb 2022"
},
{
"DOI": "10.1016/j.kint.2022.05.008",
"author": "I Benotmane",
"doi-asserted-by": "publisher",
"first-page": "00383",
"issue": "S0085–2538",
"journal-title": "Kidney Int",
"key": "268_CR5",
"unstructured": "Benotmane I, Velay A, Thaunat O, Vargas GG, Olagne J, Fafi-Kremer S et al (2022) Pre-exposure prophylaxis with Evusheld™ elicits limited neutralizing activity against the Omicron variant in kidney transplant patients. Kidney Int 22(S0085–2538):00383. https://doi.org/10.1016/j.kint.2022.05.008",
"volume": "22",
"year": "2022"
},
{
"DOI": "10.1038/s41586-020-2838-z",
"author": "S Bournazos",
"doi-asserted-by": "publisher",
"first-page": "485",
"issue": "7838",
"journal-title": "Nature",
"key": "268_CR6",
"unstructured": "Bournazos S, Corti D, Virgin HW, Ravetch JV (2020) Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 588(7838):485–490. https://doi.org/10.1038/s41586-020-2838-z",
"volume": "588",
"year": "2020"
},
{
"DOI": "10.1038/s41586-021-04386-2",
"author": "E Cameroni",
"doi-asserted-by": "publisher",
"journal-title": "Nature",
"key": "268_CR7",
"unstructured": "Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K et al (2021) Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. https://doi.org/10.1038/s41586-021-04386-2",
"year": "2021"
},
{
"DOI": "10.1038/s41586-022-05644-7",
"doi-asserted-by": "publisher",
"key": "268_CR8",
"unstructured": "Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A et al (2022) Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. https://doi.org/10.1038/s41586-022-05644-7"
},
{
"DOI": "10.1172/JCI168603",
"doi-asserted-by": "crossref",
"key": "268_CR9",
"unstructured": "Casadevall A, Focosi D (2023) SARS-CoV-2 variants resistant to monoclonal antibodies in immunocompromised patients is a public health concern. J Clin Invest"
},
{
"DOI": "10.1177/1756286421997381",
"doi-asserted-by": "publisher",
"key": "268_CR10",
"unstructured": "Dalakas MC, Spaeth PJ (2021) The importance of FcRn in neuro-immunotherapies: from IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors. Ther Adv Neurol Disord. https://doi.org/10.1177/1756286421997381"
},
{
"DOI": "10.1097/inf.0000000000001916",
"author": "JB Domachowske",
"doi-asserted-by": "publisher",
"first-page": "886",
"issue": "9",
"journal-title": "Pediatr Infect Dis J",
"key": "268_CR11",
"unstructured": "Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T, Villafana T et al (2018) Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr Infect Dis J 37(9):886–892. https://doi.org/10.1097/inf.0000000000001916",
"volume": "37",
"year": "2018"
},
{
"DOI": "10.1007/s15010-023-02098-5",
"doi-asserted-by": "crossref",
"key": "268_CR12",
"unstructured": "Drysdale M, Gibbons DC, Singh M, Rolland C, Lavoie L, Skingsley A et al (2024) Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Infection 52:1–17"
},
{
"key": "268_CR13",
"unstructured": "ETF statement on the loss of activity of anti-spike protein monoclonal antibodies due to emerging SARS-CoV-2 variants of concern (2022). 9 December 2022 EMA/931457/2022. Accessed online at https://www.ema.europa.eu/en/documents/public-statement/etf-statement-loss-activity-anti-spike-protein-monoclonal-antibodies-due-emerging-sars-cov-2_en.pdf"
},
{
"key": "268_CR14",
"unstructured": "ETF warns that monoclonal antibodies may not be effective against emerging strains of SARS-CoV-2 (2023). Accessed online at https://www.ema.europa.eu/en/news/etf-warns-monoclonal-antibodies-may-not-be-effective-against-emerging-strains-sars-cov-2 on 24 Jan 2023"
},
{
"DOI": "10.7326/m22-3428",
"author": "TH Evering",
"doi-asserted-by": "publisher",
"first-page": "658",
"issue": "5",
"journal-title": "Ann Intern Med",
"key": "268_CR15",
"unstructured": "Evering TH, Chew KW, Giganti MJ, Moser C, Pinilla M, Wohl DA et al (2023) Safety and efficacy of combination SARS-CoV-2 neutralizing monoclonal antibodies Amubarvimab plus Romlusevimab in nonhospitalized patients With COVID-19. Ann Intern Med 176(5):658–666. https://doi.org/10.7326/m22-3428",
"volume": "176",
"year": "2023"
},
{
"key": "268_CR16",
"unstructured": "Fact sheet for healthcare providers: emergency use authorization for bebtelovimab (2022). Accessed online at https://www.fda.gov/media/156152/download on 21 Feb 2022"
},
{
"key": "268_CR17",
"unstructured": "FDA (2022) Coronavirus (COVID-19) update: FDA authorizes New monoclonal antibody for treatment of COVID-19 that retains activity against Omicron variant. Accessed online at https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-monoclonal-antibody-treatment-covid-19-retains on 17 Feb 2022"
},
{
"key": "268_CR18",
"unstructured": "FDA Announces Bebtelovimab is Not Currently Authorized in Any US Region (2022). Accessed online at https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-bebtelovimab-not-currently-authorized-any-us-region on 1 Dec 2022"
},
{
"key": "268_CR19",
"unstructured": "FDA announces Evusheld is not currently authorized for emergency use in the U.S. (2023) Accessed online at https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us on 3 Feb 2023"
},
{
"key": "268_CR20",
"unstructured": "FDA Statement (2022) Coronavirus (COVID-19) update: FDA limits use of certain monoclonal antibodies to treat COVID-19 due to the Omicron variant. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron Accessed 8 June 2023"
},
{
"key": "268_CR21",
"unstructured": "FDA updates Sotrovimab emergency use authorization. March 30, 2022. https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimab-emergency-use-authorization Accessed 9 June 2023"
},
{
"DOI": "10.1002/rmv.2231",
"author": "D Focosi",
"doi-asserted-by": "publisher",
"journal-title": "Rev Med Virol",
"key": "268_CR22",
"unstructured": "Focosi D, Maggi F (2021) Neutralising antibody escape of SARS-CoV-2 spike protein: risk assessment for antibody-based Covid-19 therapeutics and vaccines. Rev Med Virol. https://doi.org/10.1002/rmv.2231",
"year": "2021"
},
{
"DOI": "10.2217/fmb-2021-0286",
"author": "D Focosi",
"doi-asserted-by": "publisher",
"first-page": "219",
"journal-title": "Future Microbiol",
"key": "268_CR23",
"unstructured": "Focosi D, Maggi F, McConnell S, Casadevall A (2022a) Spike mutations in SARS-CoV-2 AY sublineages of delta variant of concern: implications for the future of the pandemic. Future Microbiol 17:219–221. https://doi.org/10.2217/fmb-2021-0286",
"volume": "17",
"year": "2022"
},
{
"DOI": "10.3390/ijms23010029",
"author": "D Focosi",
"doi-asserted-by": "crossref",
"first-page": "29",
"issue": "1",
"journal-title": "Int J Mol Sci",
"key": "268_CR24",
"unstructured": "Focosi D, Maggi F, Franchini M, McConnell S, Casadevall A (2022b) Analysis of immune escape variants from antibody-based therapeutics against COVID-19: a systematic review. Int J Mol Sci 23(1):29",
"volume": "23",
"year": "2022"
},
{
"DOI": "10.1016/S1473-3099(22)00311-5",
"author": "D Focosi",
"doi-asserted-by": "publisher",
"first-page": "00311",
"issue": "11",
"journal-title": "Lancet Infect Dis",
"key": "268_CR25",
"unstructured": "Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M (2022c) Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect Dis 22(11):00311–00315. https://doi.org/10.1016/S1473-3099(22)00311-5",
"volume": "22",
"year": "2022"
},
{
"DOI": "10.3390/ijms24032264",
"author": "D Focosi",
"doi-asserted-by": "crossref",
"first-page": "2264",
"issue": "3",
"journal-title": "Int J Mol Sci",
"key": "268_CR26",
"unstructured": "Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A (2023a) Convergent evolution in SARS-CoV-2 Spike creates a variant soup from which new COVID-19 waves emerge. Int J Mol Sci 24(3):2264",
"volume": "24",
"year": "2023"
},
{
"DOI": "10.3390/v15051048",
"doi-asserted-by": "crossref",
"key": "268_CR27",
"unstructured": "Focosi D (2023) A web tool to estimate baaseline anti-Spike monoclonal antibody efficacy based on regional genomic surveillance. Viruses 15(5):1048"
},
{
"DOI": "10.1080/21645515.2023.2260040",
"doi-asserted-by": "crossref",
"key": "268_CR28",
"unstructured": "Focosi D, Maggi F (2023) Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccines Immunotherap 19(2)"
},
{
"DOI": "10.3390/pathogens11080823",
"doi-asserted-by": "publisher",
"key": "268_CR29",
"unstructured": "Focosi D, Tuccori M (2022) Prescription of anti-spike monoclonal antibodies in COVID-19 patients with resistant SARS-CoV-2 variants in Italy. Pathogens (Basel, Switzerland) 11(8). https://doi.org/10.3390/pathogens11080823"
},
{
"DOI": "10.1016/j.drup.2023.100991",
"doi-asserted-by": "publisher",
"key": "268_CR30",
"unstructured": "Focosi D, McConnell S, Sullivan DJ, Casadevall A (2023b) Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resist Updates 100991. https://doi.org/10.1016/j.drup.2023.100991"
},
{
"key": "268_CR31",
"unstructured": "Francica J, Rosenthal K, Ren K, Flores DJ et al (2023) The SARS-CoV-2 monoclonal antibody AZD3152 potently neutralises historical and currently circulating variants. ECCMID. Copenhagen"
},
{
"DOI": "10.1001/jama.2021.0202%JJAMA",
"doi-asserted-by": "publisher",
"key": "268_CR32",
"unstructured": "Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J et al (2021) Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325(7):632–644. https://doi.org/10.1001/jama.2021.0202%JJAMA"
},
{
"DOI": "10.1016/S0140-6736(22)00163-5",
"doi-asserted-by": "crossref",
"key": "268_CR42",
"unstructured": "Group RC, Horby PW, Mafham M, Peto L, Campbell M, Pessoa-Amorim G et al (2022) Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 399(10325):665–676. https://doi.org/10.1016/S0140-6736(22)00163-5"
},
{
"DOI": "10.1056/NEJMoa2107934",
"doi-asserted-by": "publisher",
"key": "268_CR33",
"unstructured": "Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR et al (2021) Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 385:1941–1950. https://doi.org/10.1056/NEJMoa2107934"
},
{
"DOI": "10.1371/journal.ppat.1009542",
"author": "K Haga",
"doi-asserted-by": "publisher",
"issue": "10",
"journal-title": "PLoS Pathog",
"key": "268_CR34",
"unstructured": "Haga K, Takai-Todaka R, Matsumura Y, Song C, Takano T, Tojo T et al (2021) Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model. PLoS Pathog 17(10):e1009542. https://doi.org/10.1371/journal.ppat.1009542",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.1093/ve/veac104",
"author": "PJ Halfmann",
"doi-asserted-by": "publisher",
"journal-title": "Virus Evol",
"key": "268_CR35",
"unstructured": "Halfmann PJ, Minor NR, Haddock LA III, Maddox R, Moreno GK, Braun KM et al (2022) Evolution of a globally unique SARS-CoV-2 Spike E484T monoclonal antibody escape mutation in a persistently infected, immunocompromised individual. Virus Evol. https://doi.org/10.1093/ve/veac104",
"year": "2022"
},
{
"DOI": "10.1038/363446a0",
"author": "C Hamers-Casterman",
"doi-asserted-by": "publisher",
"first-page": "446",
"issue": "6428",
"journal-title": "Nature",
"key": "268_CR36",
"unstructured": "Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448. https://doi.org/10.1038/363446a0",
"volume": "363",
"year": "1993"
},
{
"DOI": "10.1016/j.virs.2023.07.003",
"author": "Q Han",
"doi-asserted-by": "publisher",
"journal-title": "Virologica Sinica",
"key": "268_CR37",
"unstructured": "Han Q, Wang S, Wang Z, Zhang C, Wang X, Feng N et al (2023) Nanobodies with cross-neutralizing activity provide prominent therapeutic efficacy in mild and severe COVID-19 rodent models. Virologica Sinica. https://doi.org/10.1016/j.virs.2023.07.003",
"year": "2023"
},
{
"DOI": "10.3390/v15020530",
"author": "L Hao",
"doi-asserted-by": "crossref",
"first-page": "530",
"issue": "2",
"journal-title": "Viruses",
"key": "268_CR38",
"unstructured": "Hao L, Hsiang T-Y, Dalmat RR, Ireton R, Morton JF, Stokes C et al (2023) Dynamics of SARS-CoV-2 VOC neutralization and novel mAb reveal protection against Omicron. Viruses 15(2):530",
"volume": "15",
"year": "2023"
},
{
"DOI": "10.1111/irv.13150",
"doi-asserted-by": "crossref",
"key": "268_CR39",
"unstructured": "Harman K, Nash SG, Webster HH, Groves N, Hardstaff J, Bridgen J et al (2022) Comparison of the risk of hospitalisation among BA.1 and BA.2 COVID-19 cases treated with Sotrovimab in the community in England. Influenza Other Respi Viruses 17(5):e13150. https://doi.org/10.1111/irv.13150"
},
{
"DOI": "10.1067/mai.2001.116576",
"author": "TK Hart",
"doi-asserted-by": "publisher",
"first-page": "250",
"issue": "2",
"journal-title": "J Allergy Clin Immunol",
"key": "268_CR40",
"unstructured": "Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS, Maleeff BE et al (2001) Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol 108(2):250–257. https://doi.org/10.1067/mai.2001.116576",
"volume": "108",
"year": "2001"
},
{
"DOI": "10.1016/j.xcrm.2023.100991",
"doi-asserted-by": "publisher",
"key": "268_CR41",
"unstructured": "He Q, Wu L, Xu Z, Wang X, Xie Y, Chai Y et al (2023) An updated atlas of antibody evasion by SARS-CoV-2 Omicron sub-variants including BQ.1.1 and XBB. Cell Rep Med 4(4):100991. https://doi.org/10.1016/j.xcrm.2023.100991"
},
{
"DOI": "10.1101/2021.08.02.454829",
"doi-asserted-by": "crossref",
"key": "268_CR43",
"unstructured": "Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan Y-H et al (2021) Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biol. https://doi.org/10.1038/s42003-022-03262-7"
},
{
"key": "268_CR44",
"unstructured": "IDSA Guidelines on the Treatment and Management of Patients with COVID-19 (2022). Accessed online at https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/ on 9 Feb 2022"
},
{
"DOI": "10.1038/s41586-022-04594-4",
"author": "S Iketani",
"doi-asserted-by": "publisher",
"first-page": "553",
"issue": "7906",
"journal-title": "Nature",
"key": "268_CR45",
"unstructured": "Iketani S, Liu L, Guo Y, Liu L, Huang Y, Wang M et al (2022) Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604(7906):553–556. https://doi.org/10.1038/s41586-022-04594-4",
"volume": "604",
"year": "2022"
},
{
"DOI": "10.1056/NEJMc2214302",
"doi-asserted-by": "publisher",
"key": "268_CR46",
"unstructured": "Imai M, Ito M, Kiso M, Yamayoshi S, Uraki R, Fukushi S et al (2022) Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB. N Engl J Med. https://doi.org/10.1056/NEJMc2214302"
},
{
"DOI": "10.1016/j.ijid.2022.06.045",
"doi-asserted-by": "crossref",
"key": "268_CR47",
"unstructured": "Isa F, Forleo-Neto E, Meyer J, Zheng W, Rasmussen S, Armas D et al (2021) Repeat subcutaneous administration of REGEN-COV® in adults is well-tolerated and prevents the occurrence of COVID-19. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2022.06.045"
},
{
"DOI": "10.1093/ofid/ofad314",
"doi-asserted-by": "publisher",
"key": "268_CR48",
"unstructured": "Ison MG, Weinstein DF, Dobryanska M, Holmes A, Phelan A-M, Li Y et al (2023) Prevention of COVID-19 following a single intramuscular administration of Adintrevimab: results from a phase 2/3 randomized, double-blind, placebo-controlled trial (EVADE). Open Forum Infect Dis 10(7). https://doi.org/10.1093/ofid/ofad314"
},
{
"DOI": "10.1056/NEJMoa2116044",
"doi-asserted-by": "publisher",
"key": "268_CR49",
"unstructured": "Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V et al (2022) Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 386(6):509–520. https://doi.org/10.1056/NEJMoa2116044"
},
{
"DOI": "10.1101/2023.12.08.570782",
"doi-asserted-by": "crossref",
"key": "268_CR50",
"unstructured": "Kaku Y, Okumura K, Padilla-Blanco M, Kosugi Y, Uriu K, Alfredo Amolong Hinay J et al (2023) Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00813-7"
},
{
"DOI": "10.1080/19420862.2021.2014296",
"doi-asserted-by": "publisher",
"key": "268_CR51",
"unstructured": "Kaplon H, Chenoweth A, Crescioli S, Reichert JM (2022) Antibodies to watch in 2022. mAbs 14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296"
},
{
"DOI": "10.1101/2022.02.01.478504",
"doi-asserted-by": "publisher",
"key": "268_CR52",
"unstructured": "Ku Z, Xie X, Lin J, Gao P, Sahili AE, Su H et al (2022) Engineering SARS-CoV-2 cocktail antibodies into a bispecific format improves neutralizing potency and breadth. medRxiv. https://doi.org/10.1101/2022.02.01.478504"
},
{
"DOI": "10.1056/NEJMoa2116620",
"author": "MJ Levin",
"doi-asserted-by": "publisher",
"journal-title": "N Engl J Med",
"key": "268_CR53",
"unstructured": "Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A et al (2022) Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med. https://doi.org/10.1056/NEJMoa2116620",
"year": "2022"
},
{
"DOI": "10.1101/2021.12.30.474535",
"doi-asserted-by": "crossref",
"key": "268_CR54",
"unstructured": "Li C, Zhan W, Yang Z, Tu C, Zhu Y, Song W et al (2021) Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell. https://doi.org/10.1016/j.cell.2022.03.009"
},
{
"DOI": "10.1093/cid/ciac448",
"author": "Y Lin",
"doi-asserted-by": "publisher",
"first-page": "e336",
"issue": "3",
"journal-title": "Clin Infect Dis",
"key": "268_CR55",
"unstructured": "Lin Y, Yue S, Yang Y, Yang S, Pan Z, Yang X et al (2023) Nasal spray of neutralizing monoclonal antibody 35B5 confers potential prophylaxis against severe acute respiratory syndrome coronavirus 2 variants of concern: a small-scale clinical trial. Clin Infect Dis 76(3):e336–e341. https://doi.org/10.1093/cid/ciac448",
"volume": "76",
"year": "2023"
},
{
"DOI": "10.1101/2021.09.12.21263373",
"doi-asserted-by": "crossref",
"key": "268_CR56",
"unstructured": "Liu Y, Zeng Q, Deng C, Li M, Li L, Liu D et al (2021) Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. Cell Discov. https://doi.org/10.1038/s41421-022-00373-7"
},
{
"DOI": "10.1016/j.prrv.2018.12.001",
"author": "MS Luna",
"doi-asserted-by": "publisher",
"first-page": "35",
"journal-title": "Paediatr Respir Rev",
"key": "268_CR57",
"unstructured": "Luna MS, Manzoni P, Paes B, Baraldi E, Cossey V, Kugelman A et al (2020) Expert consensus on palivizumab use for respiratory syncytial virus in developed countries. Paediatr Respir Rev 33:35–44. https://doi.org/10.1016/j.prrv.2018.12.001",
"volume": "33",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2033130",
"author": "JD Lundgren",
"doi-asserted-by": "publisher",
"first-page": "905",
"issue": "10",
"journal-title": "N Engl J Med",
"key": "268_CR58",
"unstructured": "Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U et al (2021) A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med 384(10):905–914. https://doi.org/10.1056/NEJMoa2033130",
"volume": "384",
"year": "2021"
},
{
"DOI": "10.1126/scitranslmed.abj7125",
"doi-asserted-by": "publisher",
"key": "268_CR59",
"unstructured": "Martinez DR, Schäfer A, Gobeil S, Li D, De la Cruz G, Parks R et al (2022) A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 14(629):eabj7125. https://doi.org/10.1126/scitranslmed.abj7125"
},
{
"DOI": "10.1101/2022.02.27.482162",
"doi-asserted-by": "crossref",
"key": "268_CR60",
"unstructured": "McSweeney MD, Stewart I, Richardson Z, Kang H, Park Y, Kim C et al (2022) Stable nebulization and muco-trapping properties of Regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng Transl Med. http://doi.org/10.1002/btm2.10391"
},
{
"DOI": "10.1371/journal.ppat.1009958",
"author": "N Mishra",
"doi-asserted-by": "publisher",
"issue": "9",
"journal-title": "PLoS Pathog",
"key": "268_CR61",
"unstructured": "Mishra N, Kumar S, Singh S, Bansal T, Jain N, Saluja S et al (2021) Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathog 17(9):e1009958. https://doi.org/10.1371/journal.ppat.1009958",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.1016/s0968-0004(01)01790-x",
"author": "S Muyldermans",
"doi-asserted-by": "publisher",
"first-page": "230",
"issue": "4",
"journal-title": "Trends Biochem Sci",
"key": "268_CR62",
"unstructured": "Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26(4):230–235. https://doi.org/10.1016/s0968-0004(01)01790-x",
"volume": "26",
"year": "2001"
},
{
"DOI": "10.1126/sciadv.abh0319",
"doi-asserted-by": "publisher",
"key": "268_CR63",
"unstructured": "Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB et al (2021) Inhalable nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv 7(22). https://doi.org/10.1126/sciadv.abh0319"
},
{
"DOI": "10.1006/clim.2000.4975",
"author": "R Newman",
"doi-asserted-by": "publisher",
"first-page": "164",
"issue": "2",
"journal-title": "Clin Immunol",
"key": "268_CR64",
"unstructured": "Newman R, Hariharan K, Reff M, Anderson DR, Braslawsky G, Santoro D et al (2001) Modification of the Fc region of a primatized IgG antibody to human CD4 retains its ability to modulate CD4 receptors but does not deplete CD4+ T cells in chimpanzees. Clin Immunol 98(2):164–174. https://doi.org/10.1006/clim.2000.4975",
"volume": "98",
"year": "2001"
},
{
"DOI": "10.1056/NEJMoa2109682",
"author": "MP O’Brien",
"doi-asserted-by": "publisher",
"first-page": "1184",
"journal-title": "N Engl J Med",
"key": "268_CR65",
"unstructured": "O’Brien MP, Forleo-Neto E, Musser BJ, Isa F, Chan K-C, Sarkar N et al (2021) Subcutaneous REGEN-COV antibody combination to prevent Covid-19. N Engl J Med 385:1184–1195. https://doi.org/10.1056/NEJMoa2109682",
"volume": "385",
"year": "2021"
},
{
"DOI": "10.1016/j.antiviral.2022.105372",
"doi-asserted-by": "publisher",
"key": "268_CR66",
"unstructured": "Ohashi H, Hishiki T, Akazawa D, Kim KS, Woo J, Shionoya K et al (2022) Different efficacies of neutralizing antibodies and antiviral drugs on SARS-CoV-2 Omicron subvariants, BA.1 and BA.2. Antiviral Res. https://doi.org/10.1016/j.antiviral.2022.105372"
},
{
"DOI": "10.1126/science.abm8143",
"author": "YJ Park",
"doi-asserted-by": "publisher",
"first-page": "449",
"issue": "6579",
"journal-title": "Science",
"key": "268_CR67",
"unstructured": "Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC et al (2022) Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 375(6579):449–454. https://doi.org/10.1126/science.abm8143",
"volume": "375",
"year": "2022"
},
{
"DOI": "10.1101/2023.02.08.23285654",
"doi-asserted-by": "publisher",
"key": "268_CR68",
"unstructured": "Patel V, Levick B, Boult S, Gibbons DC, Drysdale M, Lloyd EJ et al (2023) Characteristics and outcomes of COVID-19 patients presumed to be treated with sotrovimab in NHS hospitals in England. medRxiv. https://doi.org/10.1101/2023.02.08.23285654"
},
{
"DOI": "10.1016/0022-1759(94)00275-2",
"author": "RS Peebles Jr",
"doi-asserted-by": "publisher",
"first-page": "77",
"issue": "1",
"journal-title": "J Immunol Methods",
"key": "268_CR69",
"unstructured": "Peebles RS Jr, Liu MC, Lichtenstein LM, Hamilton RG (1995) IgA, IgG and IgM quantification in bronchoalveolar lavage fluids from allergic rhinitics, allergic asthmatics, and normal subjects by monoclonal antibody-based immunoenzymetric assays. J Immunol Methods 179(1):77–86. https://doi.org/10.1016/0022-1759(94)00275-2",
"volume": "179",
"year": "1995"
},
{
"DOI": "10.1101/2022.03.05.483133",
"doi-asserted-by": "publisher",
"key": "268_CR70",
"unstructured": "Piepenbrink MS, Park J-G, Deshpande A, Loos A, Ye C, Basu M et al (2022) Potent universal-coronavirus therapeutic activity mediated by direct respiratory administration of a Spike S2 domain-specific human neutralizing monoclonal antibody. bioRxiv. https://doi.org/10.1101/2022.03.05.483133"
},
{
"DOI": "10.1126/science.abj3321",
"author": "D Pinto",
"doi-asserted-by": "publisher",
"first-page": "1109",
"issue": "6559",
"journal-title": "Science",
"key": "268_CR71",
"unstructured": "Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP et al (2021) Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373(6559):1109–1116. https://doi.org/10.1126/science.abj3321",
"volume": "373",
"year": "2021"
},
{
"DOI": "10.1016/j.annonc.2021.07.015",
"author": "F Pommeret",
"doi-asserted-by": "publisher",
"journal-title": "Ann Oncol",
"key": "268_CR72",
"unstructured": "Pommeret F, Colomba J, Bigenwald C, Laparra A, Bockel S, Bayle A et al (2021) Bamlanivimab+ etesevimab therapy induces SARS-CoV-2 immune escape mutations and secondary clinical deterioration in COVID-19 patients with B-cell malignancies. Ann Oncol. https://doi.org/10.1016/j.annonc.2021.07.015",
"year": "2021"
},
{
"DOI": "10.1101/2023.09.11.557206",
"doi-asserted-by": "crossref",
"key": "268_CR73",
"unstructured": "Qu P, Xu K, Faraone JN, Goodarzi N, Zheng Y-M, Carlin C et al (2023) Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 Omicron BA.2.86 and FLip variants. Cell. https://doi.org/10.1016/j.cell.2023.12.026"
},
{
"DOI": "10.1016/j.celrep.2023.112443",
"doi-asserted-by": "publisher",
"key": "268_CR74",
"unstructured": "Qu P, Faraone JN, Evans JP, Zheng YM, Carlin C, Anghelina M et al (2023) Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants. Cell Rep 42(5):112443. https://doi.org/10.1016/j.celrep.2023.112443"
},
{
"DOI": "10.1016/j.tips.2020.07.004",
"author": "A Renn",
"doi-asserted-by": "publisher",
"first-page": "815",
"issue": "11",
"journal-title": "Trends Pharmacol Sci",
"key": "268_CR75",
"unstructured": "Renn A, Fu Y, Hu X, Hall MD, Simeonov A (2020) Fruitful neutralizing antibody pipeline brings hope to defeat SARS-Cov-2. Trends Pharmacol Sci 41(11):815–829. https://doi.org/10.1016/j.tips.2020.07.004",
"volume": "41",
"year": "2020"
},
{
"key": "268_CR76",
"unstructured": "Reuters (2022) GSK-Vir therapy has neutralising activity against Omicron sub-variant, data shows. Accessed online at https://www.reuters.com/business/healthcare-pharmaceuticals/gsk-vir-therapy-works-against-omicron-sub-variant-data-suggests-2022-02-10/ on 15 Feb 2022"
},
{
"DOI": "10.1128/aac.01285-13",
"author": "GJ Robbie",
"doi-asserted-by": "publisher",
"first-page": "6147",
"issue": "12",
"journal-title": "Antimicrob Agents Chemother",
"key": "268_CR77",
"unstructured": "Robbie GJ, Criste R, Dall’acqua WF, Jensen K, Patel NK, Losonsky GA et al (2013) A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother 57(12):6147–6153. https://doi.org/10.1128/aac.01285-13",
"volume": "57",
"year": "2013"
},
{
"DOI": "10.1101/2021.10.02.21264415%JmedRxiv",
"doi-asserted-by": "publisher",
"key": "268_CR78",
"unstructured": "Sabin AP, Richmond CS, Kenny PA (2022) Emergence and onward transmission of a SARS-CoV-2 E484K variant among household contacts of a bamlanivimab-treated patient. Diagn Microbiol Infect Dis 103(1):115656. https://doi.org/10.1101/2021.10.02.21264415%JmedRxiv"
},
{
"DOI": "10.1038/s41586-023-06649-6",
"doi-asserted-by": "publisher",
"key": "268_CR79",
"unstructured": "Sanderson T, Hisner R, Donovan-Banfield I, Peacock T, Ruis C (2023) A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature. https://doi.org/10.1038/s41586-023-06649-6"
},
{
"DOI": "10.3389/fimmu.2019.01296",
"doi-asserted-by": "publisher",
"key": "268_CR80",
"unstructured": "Saunders KO (2019) Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01296"
},
{
"DOI": "10.1084/jem.20201993",
"doi-asserted-by": "publisher",
"key": "268_CR81",
"unstructured": "Schäfer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S et al (2020) Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivoIn vivo efficacy of anti–SARS-CoV-2 antibodies. J Exp Med 218(3). https://doi.org/10.1084/jem.20201993"
},
{
"DOI": "10.1093/protein/gzw040",
"author": "T Schlothauer",
"doi-asserted-by": "publisher",
"first-page": "457",
"issue": "10",
"journal-title": "Protein Eng Des Select PEDS",
"key": "268_CR82",
"unstructured": "Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C et al (2016) Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Select PEDS 29(10):457–466. https://doi.org/10.1093/protein/gzw040",
"volume": "29",
"year": "2016"
},
{
"DOI": "10.1016/S1473-3099(21)00751-9",
"author": "WH Self",
"doi-asserted-by": "publisher",
"first-page": "622",
"issue": "5",
"journal-title": "Lancet Infect Dis",
"key": "268_CR83",
"unstructured": "Self WH, Sandkovsky U, Reilly CS, Vock DM, Gottlieb RL, Mack M et al (2022) Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect Dis 22(5):622–635. https://doi.org/10.1016/S1473-3099(21)00751-9",
"volume": "22",
"year": "2022"
},
{
"DOI": "10.1101/2023.09.02.556033",
"doi-asserted-by": "publisher",
"key": "268_CR84",
"unstructured": "Sheward DJ, Yang Y, Westerberg M, Öling S, Muschiol S, Sato K et al (2023) Sensitivity of BA.2.86 to prevailing neutralising antibody responses. Lancet Infect Dis. https://doi.org/10.1101/2023.09.02.556033"
},
{
"DOI": "10.3389/fimmu.2021.752003",
"doi-asserted-by": "publisher",
"key": "268_CR85",
"unstructured": "Shrestha LB, Tedla N, Bull RA (2021) Broadly-neutralizing antibodies against emerging SARS-CoV-2 variants. Front Immunol 12:752003. https://doi.org/10.3389/fimmu.2021.752003"
},
{
"key": "268_CR86",
"unstructured": "Some States Still Pushing Ineffective Covid Antibody Treatments (2022). Accessed online at https://www.medscape.com/viewarticle/967020. Accessed on 26 April 2022"
},
{
"DOI": "10.1080/22221751.2023.2212806",
"doi-asserted-by": "publisher",
"key": "268_CR87",
"unstructured": "Song R, Zeng G, Yu J, Meng X, Chen X, Li J et al (2023) Post-exposure prophylaxis with SA58 (anti-SARS-COV-2 monoclonal antibody) nasal spray for the prevention of symptomatic COVID-19 in healthy adult workers: a randomized, single-blind, placebo-controlled clinical study. Emerg Microbes Infect 2212806. https://doi.org/10.1080/22221751.2023.2212806"
},
{
"DOI": "10.1101/2022.03.21.22272672",
"doi-asserted-by": "crossref",
"key": "268_CR88",
"unstructured": "Stadler E, Chai KL, Schlub TE, Cromer D, Polizzotto MN, Kent SJ et al (2022a) Determinants of passive antibody efficacy in SARS-CoV-2 infection. Lancet Microbe. https://doi.org/10.1016/S2666-5247(23)00194-5"
},
{
"DOI": "10.1101/2022.11.22.22282199",
"doi-asserted-by": "crossref",
"key": "268_CR89",
"unstructured": "Stadler E, Burgess MT, Schlub TE, Chai KL, McQuilten ZK, Wood EM et al (2022b) Monoclonal antibody levels and protection from COVID-19. Nat Commun. https://doi.org/10.1038/s41467-023-40204-1"
},
{
"DOI": "10.1038/s41467-022-33864-y",
"author": "DJ Sullivan",
"doi-asserted-by": "publisher",
"first-page": "6478",
"issue": "1",
"journal-title": "Nat Comm",
"key": "268_CR90",
"unstructured": "Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D (2022) Analysis of anti-Omicron neutralizing antibody titers in different convalescent plasma sources. Nat Comm 13(1):6478. https://doi.org/10.1038/s41467-022-33864-y",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1101/2022.11.25.517977",
"doi-asserted-by": "publisher",
"key": "268_CR91",
"unstructured": "Sullivan DJ, Franchini M, Senefeld JW, Joyner MJ, Casadevall A, Focosi D (2023) Plasma after both SARS-CoV-2 boosted vaccination and COVID-19 potently neutralizes BQ1.1 and XBB. J General Virol. https://doi.org/10.1101/2022.11.25.517977"
},
{
"DOI": "10.1007/s40265-021-01626-7",
"author": "YY Syed",
"doi-asserted-by": "publisher",
"first-page": "2133",
"issue": "18",
"journal-title": "Drugs",
"key": "268_CR92",
"unstructured": "Syed YY (2021) Regdanvimab: first approval. Drugs 81(18):2133–2137. https://doi.org/10.1007/s40265-021-01626-7",
"volume": "81",
"year": "2021"
},
{
"DOI": "10.1038/s41598-022-07952-4",
"doi-asserted-by": "publisher",
"key": "268_CR93",
"unstructured": "Titong A, Gallolu Kankanamalage S, Dong J, Huang B, Spadoni N, Wang B et al (2022) First-in-class trispecific VHH-Fc based antibody with potent prophylactic and therapeutic efficacy against SARS-CoV-2 and variants. Sci Rep 12(1):4163. https://doi.org/10.1038/s41598-022-07952-4"
},
{
"DOI": "10.1038/s41586-021-03817-4",
"author": "MA Tortorici",
"doi-asserted-by": "publisher",
"first-page": "103",
"issue": "7874",
"journal-title": "Nature",
"key": "268_CR94",
"unstructured": "Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F et al (2021) Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 597(7874):103–108. https://doi.org/10.1038/s41586-021-03817-4",
"volume": "597",
"year": "2021"
},
{
"DOI": "10.1101/2022.12.22.521201",
"doi-asserted-by": "crossref",
"key": "268_CR95",
"unstructured": "Touret F, Giraud E, Bourret J, Donati F, Tran-Rajau J, Chiaravalli J et al (2022) Enhanced neutralization escape to therapeutic monoclonal antibodies by SARS-CoV-2 Omicron sub-lineages. iScience. https://doi.org/10.1016/j.isci.2023.106413"
},
{
"key": "268_CR96",
"unstructured": "Update on AZD7442 STORM CHASER trial in post-exposure prevention of symptomatic COVID-19 (2022). Accessed online at https://www.astrazeneca.com/media-centre/press-releases/2021/update-on-azd7442-storm-chaser-trial.html on 21 Feb 2022"
},
{
"DOI": "10.1016/S1473-3099(23)00575-3",
"doi-asserted-by": "publisher",
"key": "268_CR97",
"unstructured": "Uriu K, Ito J, Kosugi Y, Tanaka YL, Mugita Y, Guo Z et al (2023) Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00575-3"
},
{
"key": "268_CR98",
"unstructured": "US Food and Drug Administration (FDA) (2021) Clinical memorandum Re: EUA 26382. Product: COVID-19 Convalescent Plasma. Issued on December 27, 2021 at https://www.fda.gov/media/141477/download"
},
{
"DOI": "10.1016/j.antiviral.2022.105252",
"author": "L Vangeel",
"doi-asserted-by": "publisher",
"journal-title": "Antiviral Res",
"key": "268_CR99",
"unstructured": "Vangeel L, De Jonghe S, Maes P, Slechten B, Raymenants J, André E et al (2022) Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198:105252. https://doi.org/10.1016/j.antiviral.2022.105252",
"volume": "198",
"year": "2022"
},
{
"DOI": "10.1016/j.jinf.2022.07.014",
"author": "C Vellas",
"doi-asserted-by": "publisher",
"first-page": "e162",
"issue": "5",
"journal-title": "J Infect",
"key": "268_CR100",
"unstructured": "Vellas C, Kamar N, Izopet J (2022) Resistance mutations in SARS-CoV-2 Omicron variant after tixagevimab-cilgavimab treatment. J Infect 85(5):e162–e163. https://doi.org/10.1016/j.jinf.2022.07.014",
"volume": "85",
"year": "2022"
},
{
"DOI": "10.1016/j.cell.2022.12.018",
"author": "Q Wang",
"doi-asserted-by": "publisher",
"first-page": "279",
"issue": "2",
"journal-title": "Cell",
"key": "268_CR101",
"unstructured": "Wang Q, Iketani S, Li Z, Liu L, Guo Y, Huang Y et al (2023b) Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186(2):279–86.e8. https://doi.org/10.1016/j.cell.2022.12.018",
"volume": "186",
"year": "2023"
},
{
"DOI": "10.1101/2023.02.07.527406",
"doi-asserted-by": "publisher",
"key": "268_CR102",
"unstructured": "Wang X, Jiang S, Jiang S, Li X, Ai J, Lin K et al (2023a) Neutralization of SARS-CoV-2 BQ.1.1 and XBB.1.5 by breakthrough infection sera from previous and current waves in China. bioRxiv. https://doi.org/10.1101/2023.02.07.527406"
},
{
"DOI": "10.1101/2023.08.21.553968",
"doi-asserted-by": "publisher",
"key": "268_CR103",
"unstructured": "Wang Q, Guo Y, Zhang RM, Ho J, Mohri H, Valdez R et al. (2023c) Antibody neutralization of emerging SARS-CoV-2: EG.5.1 and XBC.1.6. bioRxiv. https://doi.org/10.1101/2023.08.21.553968"
},
{
"author": "C Webber",
"key": "268_CR104",
"unstructured": "Webber C, Beavon R, Thomas S, Chang LA, Cohen T, Perez J (2023) Trial in progress: a Phase I/III, randomised, modified double-blind, placebo- and active-controlled pre-exposure prophylaxis study of the SARS-CoV-2–neutralising antibody AZD3152 (SUPERNOVA). ECCMID, Copenhagen",
"volume-title": "Trial in progress: a Phase I/III, randomised, modified double-blind, placebo- and active-controlled pre-exposure prophylaxis study of the SARS-CoV-2–neutralising antibody AZD3152 (SUPERNOVA)",
"year": "2023"
},
{
"DOI": "10.1056/NEJMoa2108163",
"author": "DM Weinreich",
"doi-asserted-by": "publisher",
"issue": "23",
"journal-title": "N Engl J Med",
"key": "268_CR105",
"unstructured": "Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R et al (2021) REGEN-COV antibody combination and outcomes in outpatients with Covid-19. N Engl J Med 385(23):e81. https://doi.org/10.1056/NEJMoa2108163",
"volume": "385",
"year": "2021"
},
{
"DOI": "10.1172/jci128437",
"author": "P Weitzenfeld",
"doi-asserted-by": "publisher",
"first-page": "3952",
"issue": "9",
"journal-title": "J Clin Investig",
"key": "268_CR106",
"unstructured": "Weitzenfeld P, Bournazos S, Ravetch JV (2019) Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J Clin Investig 129(9):3952–3962. https://doi.org/10.1172/jci128437",
"volume": "129",
"year": "2019"
},
{
"DOI": "10.1016/j.jmb.2007.02.024",
"author": "H Wu",
"doi-asserted-by": "publisher",
"first-page": "652",
"issue": "3",
"journal-title": "J Mol Biol",
"key": "268_CR107",
"unstructured": "Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK et al (2007) Development of Motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 368(3):652–665. https://doi.org/10.1016/j.jmb.2007.02.024",
"volume": "368",
"year": "2007"
},
{
"DOI": "10.1016/s0140-6736(22)01938-9",
"author": "MY Wu",
"doi-asserted-by": "publisher",
"first-page": "2193",
"issue": "10369",
"journal-title": "Lancet",
"key": "268_CR108",
"unstructured": "Wu MY, Carr EJ, Harvey R, Mears HV, Kjaer S, Townsley H et al (2022a) WHO’s therapeutics and COVID-19 living guideline on mAbs needs to be reassessed. Lancet 400(10369):2193–2196. https://doi.org/10.1016/s0140-6736(22)01938-9",
"volume": "400",
"year": "2022"
},
{
"DOI": "10.3389/fimmu.2022.865401",
"author": "X Wu",
"doi-asserted-by": "publisher",
"journal-title": "Front Immunol",
"key": "268_CR109",
"unstructured": "Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S et al (2022b) Short-term instantaneous prophylaxis and efficient treatment against SARS-CoV-2 in hACE2 mice conferred by an intranasal nanobody (Nb22). Front Immunol 13:865401. https://doi.org/10.3389/fimmu.2022.865401",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1016/S1473-3099(23)00278-5",
"doi-asserted-by": "publisher",
"key": "268_CR110",
"unstructured": "Yamasoba D, Uriu K, Plianchaisuk A, Kosugi Y, Pan L, Zahradnik J et al (2023) Virological characteristics of the SARS-CoV-2 Omicron XBB.1.16 variant. Lancet Infect Dis 23(6):655–656. https://doi.org/10.1016/S1473-3099(23)00278-5"
},
{
"DOI": "10.1016/S1473-3099(23)00573-X",
"doi-asserted-by": "publisher",
"key": "268_CR111",
"unstructured": "Yang S, Yu Y, Jian F, Song W, Yisimayi A, Chen X et al (2023a) Antigenicity and infectivity characterization of SARS-CoV-2 BA.2.86. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00573-X"
},
{
"DOI": "10.1101/2023.11.13.566860",
"doi-asserted-by": "publisher",
"key": "268_CR112",
"unstructured": "Yang S, Yu Y, Xu Y, Jian F, Song W, Yisimayi A et al (2023b) Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect Dis. https://doi.org/10.1101/2023.11.13.566860"
},
{
"DOI": "10.1038/nbt.1601",
"author": "J Zalevsky",
"doi-asserted-by": "publisher",
"first-page": "157",
"issue": "2",
"journal-title": "Nat Biotechnol",
"key": "268_CR113",
"unstructured": "Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28(2):157–159. https://doi.org/10.1038/nbt.1601",
"volume": "28",
"year": "2010"
},
{
"DOI": "10.1093/infdis/jiab247",
"author": "S Zhou",
"doi-asserted-by": "publisher",
"first-page": "415",
"issue": "3",
"journal-title": "J Infect Dis",
"key": "268_CR114",
"unstructured": "Zhou S, Hill CS, Sarkar S, Tse LV, Woodburn BMD, Schinazi RF et al (2021) β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis 224(3):415–419. https://doi.org/10.1093/infdis/jiab247",
"volume": "224",
"year": "2021"
},
{
"DOI": "10.3390/v14061334",
"doi-asserted-by": "crossref",
"key": "268_CR115",
"unstructured": "Zhou H, Tada T, Dcosta BM, Landau NR (2022) SARS-CoV-2 Omicron BA.2 variant evades neutralization by therapeutic monoclonal antibodies. Viruses. https://doi.org/10.3390/v14061334"
},
{
"DOI": "10.1016/j.immuni.2023.02.005",
"doi-asserted-by": "crossref",
"key": "268_CR116",
"unstructured": "Zhou P, Song G, He W-t, Beutler N, Tse LV, Martinez DR et al (2022b) Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. Immunity. https://doi.org/10.1016/j.immuni.2023.02.005"
},
{
"DOI": "10.1126/scitranslmed.abi9215",
"doi-asserted-by": "crossref",
"key": "268_CR117",
"unstructured": "Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D et al (2022c) A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abi9215"
}
],
"reference-count": 117,
"references-count": 117,
"relation": {},
"resource": {
"primary": {
"URL": "https://link.springer.com/10.1007/82_2024_268"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities",
"type": "book-chapter",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy"
}