Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchPemivibartPemivibart (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

All Studies   All Outcomes       

Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities

Focosi, D., Current Topics in Microbiology and Immunology, doi:10.1007/82_2024_268
Aug 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Review of monoclonal antibodies for SARS-CoV-2. Author notes that the omicron variant has reset achievements to date.
Focosi et al., 11 Aug 2024, peer-reviewed, 1 author.
This PaperPemivibartAll
DOI record: { "DOI": "10.1007/82_2024_268", "ISSN": [ "0070-217X", "2196-9965" ], "URL": "http://dx.doi.org/10.1007/82_2024_268", "assertion": [ { "group": { "label": "Chapter History", "name": "ChapterHistory" }, "label": "First Online", "name": "first_online", "order": 1, "value": "11 August 2024" } ], "author": [ { "affiliation": [], "family": "Focosi", "given": "Daniele", "sequence": "first" } ], "container-title": "Current Topics in Microbiology and Immunology", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2024, 8, 10 ] ], "date-time": "2024-08-10T13:04:12Z", "timestamp": 1723295052000 }, "deposited": { "date-parts": [ [ 2024, 8, 10 ] ], "date-time": "2024-08-10T13:04:29Z", "timestamp": 1723295069000 }, "indexed": { "date-parts": [ [ 2024, 8, 11 ] ], "date-time": "2024-08-11T00:28:19Z", "timestamp": 1723336099552 }, "is-referenced-by-count": 0, "issued": { "date-parts": [ [ 2024 ] ] }, "link": [ { "URL": "https://link.springer.com/content/pdf/10.1007/82_2024_268", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1007", "published": { "date-parts": [ [ 2024 ] ] }, "published-online": { "date-parts": [ [ 2024, 8, 11 ] ] }, "published-print": { "date-parts": [ [ 2024 ] ] }, "publisher": "Springer Berlin Heidelberg", "publisher-location": "Berlin, Heidelberg", "reference": [ { "DOI": "10.1056/NEJMoa2033130", "doi-asserted-by": "publisher", "key": "268_CR1", "unstructured": "ACTIV-3/TICO LY-CoV555 Study Group (2020) A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med 384(10):905–914. https://doi.org/10.1056/NEJMoa2033130" }, { "key": "268_CR2", "unstructured": "ACTIV-3: Therapeutics for Inpatients With COVID-19—Full Text View—ClinicalTrials.gov" }, { "DOI": "10.1001/jamanetworkopen.2022.28997", "doi-asserted-by": "publisher", "key": "268_CR3", "unstructured": "Anderson TS, O’Donoghue A, Mechanic O, Dechen T, Stevens J (2022) Administration of anti–SARS-CoV-2 monoclonal antibodies after US food and drug administration deauthorization. JAMA Netw Open 5(8):e2228997-e. https://doi.org/10.1001/jamanetworkopen.2022.28997" }, { "key": "268_CR4", "unstructured": "AZD7442 reduced risk of developing severe COVID-19 or death in TACKLE Phase III outpatient treatment trial (2022). Accessed online at https://www.astrazeneca.com/content/astraz/media-centre/press-releases/2021/azd7442-phiii-trial-positive-in-covid-outpatients.html on 22 Feb 2022" }, { "DOI": "10.1016/j.kint.2022.05.008", "author": "I Benotmane", "doi-asserted-by": "publisher", "first-page": "00383", "issue": "S0085–2538", "journal-title": "Kidney Int", "key": "268_CR5", "unstructured": "Benotmane I, Velay A, Thaunat O, Vargas GG, Olagne J, Fafi-Kremer S et al (2022) Pre-exposure prophylaxis with Evusheld™ elicits limited neutralizing activity against the Omicron variant in kidney transplant patients. Kidney Int 22(S0085–2538):00383. https://doi.org/10.1016/j.kint.2022.05.008", "volume": "22", "year": "2022" }, { "DOI": "10.1038/s41586-020-2838-z", "author": "S Bournazos", "doi-asserted-by": "publisher", "first-page": "485", "issue": "7838", "journal-title": "Nature", "key": "268_CR6", "unstructured": "Bournazos S, Corti D, Virgin HW, Ravetch JV (2020) Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 588(7838):485–490. https://doi.org/10.1038/s41586-020-2838-z", "volume": "588", "year": "2020" }, { "DOI": "10.1038/s41586-021-04386-2", "author": "E Cameroni", "doi-asserted-by": "publisher", "journal-title": "Nature", "key": "268_CR7", "unstructured": "Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K et al (2021) Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. https://doi.org/10.1038/s41586-021-04386-2", "year": "2021" }, { "DOI": "10.1038/s41586-022-05644-7", "doi-asserted-by": "publisher", "key": "268_CR8", "unstructured": "Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A et al (2022) Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. https://doi.org/10.1038/s41586-022-05644-7" }, { "DOI": "10.1172/JCI168603", "doi-asserted-by": "crossref", "key": "268_CR9", "unstructured": "Casadevall A, Focosi D (2023) SARS-CoV-2 variants resistant to monoclonal antibodies in immunocompromised patients is a public health concern. J Clin Invest" }, { "DOI": "10.1177/1756286421997381", "doi-asserted-by": "publisher", "key": "268_CR10", "unstructured": "Dalakas MC, Spaeth PJ (2021) The importance of FcRn in neuro-immunotherapies: from IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors. Ther Adv Neurol Disord. https://doi.org/10.1177/1756286421997381" }, { "DOI": "10.1097/inf.0000000000001916", "author": "JB Domachowske", "doi-asserted-by": "publisher", "first-page": "886", "issue": "9", "journal-title": "Pediatr Infect Dis J", "key": "268_CR11", "unstructured": "Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T, Villafana T et al (2018) Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr Infect Dis J 37(9):886–892. https://doi.org/10.1097/inf.0000000000001916", "volume": "37", "year": "2018" }, { "DOI": "10.1007/s15010-023-02098-5", "doi-asserted-by": "crossref", "key": "268_CR12", "unstructured": "Drysdale M, Gibbons DC, Singh M, Rolland C, Lavoie L, Skingsley A et al (2024) Real-world effectiveness of sotrovimab for the treatment of SARS-CoV-2 infection during Omicron BA.2 subvariant predominance: a systematic literature review. Infection 52:1–17" }, { "key": "268_CR13", "unstructured": "ETF statement on the loss of activity of anti-spike protein monoclonal antibodies due to emerging SARS-CoV-2 variants of concern (2022). 9 December 2022 EMA/931457/2022. Accessed online at https://www.ema.europa.eu/en/documents/public-statement/etf-statement-loss-activity-anti-spike-protein-monoclonal-antibodies-due-emerging-sars-cov-2_en.pdf" }, { "key": "268_CR14", "unstructured": "ETF warns that monoclonal antibodies may not be effective against emerging strains of SARS-CoV-2 (2023). Accessed online at https://www.ema.europa.eu/en/news/etf-warns-monoclonal-antibodies-may-not-be-effective-against-emerging-strains-sars-cov-2 on 24 Jan 2023" }, { "DOI": "10.7326/m22-3428", "author": "TH Evering", "doi-asserted-by": "publisher", "first-page": "658", "issue": "5", "journal-title": "Ann Intern Med", "key": "268_CR15", "unstructured": "Evering TH, Chew KW, Giganti MJ, Moser C, Pinilla M, Wohl DA et al (2023) Safety and efficacy of combination SARS-CoV-2 neutralizing monoclonal antibodies Amubarvimab plus Romlusevimab in nonhospitalized patients With COVID-19. Ann Intern Med 176(5):658–666. https://doi.org/10.7326/m22-3428", "volume": "176", "year": "2023" }, { "key": "268_CR16", "unstructured": "Fact sheet for healthcare providers: emergency use authorization for bebtelovimab (2022). Accessed online at https://www.fda.gov/media/156152/download on 21 Feb 2022" }, { "key": "268_CR17", "unstructured": "FDA (2022) Coronavirus (COVID-19) update: FDA authorizes New monoclonal antibody for treatment of COVID-19 that retains activity against Omicron variant. Accessed online at https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-monoclonal-antibody-treatment-covid-19-retains on 17 Feb 2022" }, { "key": "268_CR18", "unstructured": "FDA Announces Bebtelovimab is Not Currently Authorized in Any US Region (2022). Accessed online at https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-bebtelovimab-not-currently-authorized-any-us-region on 1 Dec 2022" }, { "key": "268_CR19", "unstructured": "FDA announces Evusheld is not currently authorized for emergency use in the U.S. (2023) Accessed online at https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us on 3 Feb 2023" }, { "key": "268_CR20", "unstructured": "FDA Statement (2022) Coronavirus (COVID-19) update: FDA limits use of certain monoclonal antibodies to treat COVID-19 due to the Omicron variant. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron Accessed 8 June 2023" }, { "key": "268_CR21", "unstructured": "FDA updates Sotrovimab emergency use authorization. March 30, 2022. https://www.fda.gov/drugs/drug-safety-and-availability/fda-updates-sotrovimab-emergency-use-authorization Accessed 9 June 2023" }, { "DOI": "10.1002/rmv.2231", "author": "D Focosi", "doi-asserted-by": "publisher", "journal-title": "Rev Med Virol", "key": "268_CR22", "unstructured": "Focosi D, Maggi F (2021) Neutralising antibody escape of SARS-CoV-2 spike protein: risk assessment for antibody-based Covid-19 therapeutics and vaccines. Rev Med Virol. https://doi.org/10.1002/rmv.2231", "year": "2021" }, { "DOI": "10.2217/fmb-2021-0286", "author": "D Focosi", "doi-asserted-by": "publisher", "first-page": "219", "journal-title": "Future Microbiol", "key": "268_CR23", "unstructured": "Focosi D, Maggi F, McConnell S, Casadevall A (2022a) Spike mutations in SARS-CoV-2 AY sublineages of delta variant of concern: implications for the future of the pandemic. Future Microbiol 17:219–221. https://doi.org/10.2217/fmb-2021-0286", "volume": "17", "year": "2022" }, { "DOI": "10.3390/ijms23010029", "author": "D Focosi", "doi-asserted-by": "crossref", "first-page": "29", "issue": "1", "journal-title": "Int J Mol Sci", "key": "268_CR24", "unstructured": "Focosi D, Maggi F, Franchini M, McConnell S, Casadevall A (2022b) Analysis of immune escape variants from antibody-based therapeutics against COVID-19: a systematic review. Int J Mol Sci 23(1):29", "volume": "23", "year": "2022" }, { "DOI": "10.1016/S1473-3099(22)00311-5", "author": "D Focosi", "doi-asserted-by": "publisher", "first-page": "00311", "issue": "11", "journal-title": "Lancet Infect Dis", "key": "268_CR25", "unstructured": "Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M (2022c) Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect Dis 22(11):00311–00315. https://doi.org/10.1016/S1473-3099(22)00311-5", "volume": "22", "year": "2022" }, { "DOI": "10.3390/ijms24032264", "author": "D Focosi", "doi-asserted-by": "crossref", "first-page": "2264", "issue": "3", "journal-title": "Int J Mol Sci", "key": "268_CR26", "unstructured": "Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A (2023a) Convergent evolution in SARS-CoV-2 Spike creates a variant soup from which new COVID-19 waves emerge. Int J Mol Sci 24(3):2264", "volume": "24", "year": "2023" }, { "DOI": "10.3390/v15051048", "doi-asserted-by": "crossref", "key": "268_CR27", "unstructured": "Focosi D (2023) A web tool to estimate baaseline anti-Spike monoclonal antibody efficacy based on regional genomic surveillance. Viruses 15(5):1048" }, { "DOI": "10.1080/21645515.2023.2260040", "doi-asserted-by": "crossref", "key": "268_CR28", "unstructured": "Focosi D, Maggi F (2023) Respiratory delivery of passive immunotherapies for SARS-CoV-2 prophylaxis and therapy. Hum Vaccines Immunotherap 19(2)" }, { "DOI": "10.3390/pathogens11080823", "doi-asserted-by": "publisher", "key": "268_CR29", "unstructured": "Focosi D, Tuccori M (2022) Prescription of anti-spike monoclonal antibodies in COVID-19 patients with resistant SARS-CoV-2 variants in Italy. Pathogens (Basel, Switzerland) 11(8). https://doi.org/10.3390/pathogens11080823" }, { "DOI": "10.1016/j.drup.2023.100991", "doi-asserted-by": "publisher", "key": "268_CR30", "unstructured": "Focosi D, McConnell S, Sullivan DJ, Casadevall A (2023b) Analysis of SARS-CoV-2 mutations associated with resistance to therapeutic monoclonal antibodies that emerge after treatment. Drug Resist Updates 100991. https://doi.org/10.1016/j.drup.2023.100991" }, { "key": "268_CR31", "unstructured": "Francica J, Rosenthal K, Ren K, Flores DJ et al (2023) The SARS-CoV-2 monoclonal antibody AZD3152 potently neutralises historical and currently circulating variants. ECCMID. Copenhagen" }, { "DOI": "10.1001/jama.2021.0202%JJAMA", "doi-asserted-by": "publisher", "key": "268_CR32", "unstructured": "Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J et al (2021) Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325(7):632–644. https://doi.org/10.1001/jama.2021.0202%JJAMA" }, { "DOI": "10.1016/S0140-6736(22)00163-5", "doi-asserted-by": "crossref", "key": "268_CR42", "unstructured": "Group RC, Horby PW, Mafham M, Peto L, Campbell M, Pessoa-Amorim G et al (2022) Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 399(10325):665–676. https://doi.org/10.1016/S0140-6736(22)00163-5" }, { "DOI": "10.1056/NEJMoa2107934", "doi-asserted-by": "publisher", "key": "268_CR33", "unstructured": "Gupta A, Gonzalez-Rojas Y, Juarez E, Crespo Casal M, Moya J, Falci DR et al (2021) Early treatment for Covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med 385:1941–1950. https://doi.org/10.1056/NEJMoa2107934" }, { "DOI": "10.1371/journal.ppat.1009542", "author": "K Haga", "doi-asserted-by": "publisher", "issue": "10", "journal-title": "PLoS Pathog", "key": "268_CR34", "unstructured": "Haga K, Takai-Todaka R, Matsumura Y, Song C, Takano T, Tojo T et al (2021) Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model. PLoS Pathog 17(10):e1009542. https://doi.org/10.1371/journal.ppat.1009542", "volume": "17", "year": "2021" }, { "DOI": "10.1093/ve/veac104", "author": "PJ Halfmann", "doi-asserted-by": "publisher", "journal-title": "Virus Evol", "key": "268_CR35", "unstructured": "Halfmann PJ, Minor NR, Haddock LA III, Maddox R, Moreno GK, Braun KM et al (2022) Evolution of a globally unique SARS-CoV-2 Spike E484T monoclonal antibody escape mutation in a persistently infected, immunocompromised individual. Virus Evol. https://doi.org/10.1093/ve/veac104", "year": "2022" }, { "DOI": "10.1038/363446a0", "author": "C Hamers-Casterman", "doi-asserted-by": "publisher", "first-page": "446", "issue": "6428", "journal-title": "Nature", "key": "268_CR36", "unstructured": "Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448. https://doi.org/10.1038/363446a0", "volume": "363", "year": "1993" }, { "DOI": "10.1016/j.virs.2023.07.003", "author": "Q Han", "doi-asserted-by": "publisher", "journal-title": "Virologica Sinica", "key": "268_CR37", "unstructured": "Han Q, Wang S, Wang Z, Zhang C, Wang X, Feng N et al (2023) Nanobodies with cross-neutralizing activity provide prominent therapeutic efficacy in mild and severe COVID-19 rodent models. Virologica Sinica. https://doi.org/10.1016/j.virs.2023.07.003", "year": "2023" }, { "DOI": "10.3390/v15020530", "author": "L Hao", "doi-asserted-by": "crossref", "first-page": "530", "issue": "2", "journal-title": "Viruses", "key": "268_CR38", "unstructured": "Hao L, Hsiang T-Y, Dalmat RR, Ireton R, Morton JF, Stokes C et al (2023) Dynamics of SARS-CoV-2 VOC neutralization and novel mAb reveal protection against Omicron. Viruses 15(2):530", "volume": "15", "year": "2023" }, { "DOI": "10.1111/irv.13150", "doi-asserted-by": "crossref", "key": "268_CR39", "unstructured": "Harman K, Nash SG, Webster HH, Groves N, Hardstaff J, Bridgen J et al (2022) Comparison of the risk of hospitalisation among BA.1 and BA.2 COVID-19 cases treated with Sotrovimab in the community in England. Influenza Other Respi Viruses 17(5):e13150. https://doi.org/10.1111/irv.13150" }, { "DOI": "10.1067/mai.2001.116576", "author": "TK Hart", "doi-asserted-by": "publisher", "first-page": "250", "issue": "2", "journal-title": "J Allergy Clin Immunol", "key": "268_CR40", "unstructured": "Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS, Maleeff BE et al (2001) Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol 108(2):250–257. https://doi.org/10.1067/mai.2001.116576", "volume": "108", "year": "2001" }, { "DOI": "10.1016/j.xcrm.2023.100991", "doi-asserted-by": "publisher", "key": "268_CR41", "unstructured": "He Q, Wu L, Xu Z, Wang X, Xie Y, Chai Y et al (2023) An updated atlas of antibody evasion by SARS-CoV-2 Omicron sub-variants including BQ.1.1 and XBB. Cell Rep Med 4(4):100991. https://doi.org/10.1016/j.xcrm.2023.100991" }, { "DOI": "10.1101/2021.08.02.454829", "doi-asserted-by": "crossref", "key": "268_CR43", "unstructured": "Hurlburt NK, Homad LJ, Sinha I, Jennewein MF, MacCamy AJ, Wan Y-H et al (2021) Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Commun Biol. https://doi.org/10.1038/s42003-022-03262-7" }, { "key": "268_CR44", "unstructured": "IDSA Guidelines on the Treatment and Management of Patients with COVID-19 (2022). Accessed online at https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/ on 9 Feb 2022" }, { "DOI": "10.1038/s41586-022-04594-4", "author": "S Iketani", "doi-asserted-by": "publisher", "first-page": "553", "issue": "7906", "journal-title": "Nature", "key": "268_CR45", "unstructured": "Iketani S, Liu L, Guo Y, Liu L, Huang Y, Wang M et al (2022) Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604(7906):553–556. https://doi.org/10.1038/s41586-022-04594-4", "volume": "604", "year": "2022" }, { "DOI": "10.1056/NEJMc2214302", "doi-asserted-by": "publisher", "key": "268_CR46", "unstructured": "Imai M, Ito M, Kiso M, Yamayoshi S, Uraki R, Fukushi S et al (2022) Efficacy of antiviral agents against Omicron subvariants BQ.1.1 and XBB. N Engl J Med. https://doi.org/10.1056/NEJMc2214302" }, { "DOI": "10.1016/j.ijid.2022.06.045", "doi-asserted-by": "crossref", "key": "268_CR47", "unstructured": "Isa F, Forleo-Neto E, Meyer J, Zheng W, Rasmussen S, Armas D et al (2021) Repeat subcutaneous administration of REGEN-COV® in adults is well-tolerated and prevents the occurrence of COVID-19. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2022.06.045" }, { "DOI": "10.1093/ofid/ofad314", "doi-asserted-by": "publisher", "key": "268_CR48", "unstructured": "Ison MG, Weinstein DF, Dobryanska M, Holmes A, Phelan A-M, Li Y et al (2023) Prevention of COVID-19 following a single intramuscular administration of Adintrevimab: results from a phase 2/3 randomized, double-blind, placebo-controlled trial (EVADE). Open Forum Infect Dis 10(7). https://doi.org/10.1093/ofid/ofad314" }, { "DOI": "10.1056/NEJMoa2116044", "doi-asserted-by": "publisher", "key": "268_CR49", "unstructured": "Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V et al (2022) Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 386(6):509–520. https://doi.org/10.1056/NEJMoa2116044" }, { "DOI": "10.1101/2023.12.08.570782", "doi-asserted-by": "crossref", "key": "268_CR50", "unstructured": "Kaku Y, Okumura K, Padilla-Blanco M, Kosugi Y, Uriu K, Alfredo Amolong Hinay J et al (2023) Virological characteristics of the SARS-CoV-2 JN.1 variant. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00813-7" }, { "DOI": "10.1080/19420862.2021.2014296", "doi-asserted-by": "publisher", "key": "268_CR51", "unstructured": "Kaplon H, Chenoweth A, Crescioli S, Reichert JM (2022) Antibodies to watch in 2022. mAbs 14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296" }, { "DOI": "10.1101/2022.02.01.478504", "doi-asserted-by": "publisher", "key": "268_CR52", "unstructured": "Ku Z, Xie X, Lin J, Gao P, Sahili AE, Su H et al (2022) Engineering SARS-CoV-2 cocktail antibodies into a bispecific format improves neutralizing potency and breadth. medRxiv. https://doi.org/10.1101/2022.02.01.478504" }, { "DOI": "10.1056/NEJMoa2116620", "author": "MJ Levin", "doi-asserted-by": "publisher", "journal-title": "N Engl J Med", "key": "268_CR53", "unstructured": "Levin MJ, Ustianowski A, De Wit S, Launay O, Avila M, Templeton A et al (2022) Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of Covid-19. N Engl J Med. https://doi.org/10.1056/NEJMoa2116620", "year": "2022" }, { "DOI": "10.1101/2021.12.30.474535", "doi-asserted-by": "crossref", "key": "268_CR54", "unstructured": "Li C, Zhan W, Yang Z, Tu C, Zhu Y, Song W et al (2021) Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell. https://doi.org/10.1016/j.cell.2022.03.009" }, { "DOI": "10.1093/cid/ciac448", "author": "Y Lin", "doi-asserted-by": "publisher", "first-page": "e336", "issue": "3", "journal-title": "Clin Infect Dis", "key": "268_CR55", "unstructured": "Lin Y, Yue S, Yang Y, Yang S, Pan Z, Yang X et al (2023) Nasal spray of neutralizing monoclonal antibody 35B5 confers potential prophylaxis against severe acute respiratory syndrome coronavirus 2 variants of concern: a small-scale clinical trial. Clin Infect Dis 76(3):e336–e341. https://doi.org/10.1093/cid/ciac448", "volume": "76", "year": "2023" }, { "DOI": "10.1101/2021.09.12.21263373", "doi-asserted-by": "crossref", "key": "268_CR56", "unstructured": "Liu Y, Zeng Q, Deng C, Li M, Li L, Liu D et al (2021) Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine. Cell Discov. https://doi.org/10.1038/s41421-022-00373-7" }, { "DOI": "10.1016/j.prrv.2018.12.001", "author": "MS Luna", "doi-asserted-by": "publisher", "first-page": "35", "journal-title": "Paediatr Respir Rev", "key": "268_CR57", "unstructured": "Luna MS, Manzoni P, Paes B, Baraldi E, Cossey V, Kugelman A et al (2020) Expert consensus on palivizumab use for respiratory syncytial virus in developed countries. Paediatr Respir Rev 33:35–44. https://doi.org/10.1016/j.prrv.2018.12.001", "volume": "33", "year": "2020" }, { "DOI": "10.1056/NEJMoa2033130", "author": "JD Lundgren", "doi-asserted-by": "publisher", "first-page": "905", "issue": "10", "journal-title": "N Engl J Med", "key": "268_CR58", "unstructured": "Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U et al (2021) A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med 384(10):905–914. https://doi.org/10.1056/NEJMoa2033130", "volume": "384", "year": "2021" }, { "DOI": "10.1126/scitranslmed.abj7125", "doi-asserted-by": "publisher", "key": "268_CR59", "unstructured": "Martinez DR, Schäfer A, Gobeil S, Li D, De la Cruz G, Parks R et al (2022) A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 14(629):eabj7125. https://doi.org/10.1126/scitranslmed.abj7125" }, { "DOI": "10.1101/2022.02.27.482162", "doi-asserted-by": "crossref", "key": "268_CR60", "unstructured": "McSweeney MD, Stewart I, Richardson Z, Kang H, Park Y, Kim C et al (2022) Stable nebulization and muco-trapping properties of Regdanvimab/IN-006 support its development as a potent, dose-saving inhaled therapy for COVID-19. Bioeng Transl Med. http://doi.org/10.1002/btm2.10391" }, { "DOI": "10.1371/journal.ppat.1009958", "author": "N Mishra", "doi-asserted-by": "publisher", "issue": "9", "journal-title": "PLoS Pathog", "key": "268_CR61", "unstructured": "Mishra N, Kumar S, Singh S, Bansal T, Jain N, Saluja S et al (2021) Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathog 17(9):e1009958. https://doi.org/10.1371/journal.ppat.1009958", "volume": "17", "year": "2021" }, { "DOI": "10.1016/s0968-0004(01)01790-x", "author": "S Muyldermans", "doi-asserted-by": "publisher", "first-page": "230", "issue": "4", "journal-title": "Trends Biochem Sci", "key": "268_CR62", "unstructured": "Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26(4):230–235. https://doi.org/10.1016/s0968-0004(01)01790-x", "volume": "26", "year": "2001" }, { "DOI": "10.1126/sciadv.abh0319", "doi-asserted-by": "publisher", "key": "268_CR63", "unstructured": "Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB et al (2021) Inhalable nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv 7(22). https://doi.org/10.1126/sciadv.abh0319" }, { "DOI": "10.1006/clim.2000.4975", "author": "R Newman", "doi-asserted-by": "publisher", "first-page": "164", "issue": "2", "journal-title": "Clin Immunol", "key": "268_CR64", "unstructured": "Newman R, Hariharan K, Reff M, Anderson DR, Braslawsky G, Santoro D et al (2001) Modification of the Fc region of a primatized IgG antibody to human CD4 retains its ability to modulate CD4 receptors but does not deplete CD4+ T cells in chimpanzees. Clin Immunol 98(2):164–174. https://doi.org/10.1006/clim.2000.4975", "volume": "98", "year": "2001" }, { "DOI": "10.1056/NEJMoa2109682", "author": "MP O’Brien", "doi-asserted-by": "publisher", "first-page": "1184", "journal-title": "N Engl J Med", "key": "268_CR65", "unstructured": "O’Brien MP, Forleo-Neto E, Musser BJ, Isa F, Chan K-C, Sarkar N et al (2021) Subcutaneous REGEN-COV antibody combination to prevent Covid-19. N Engl J Med 385:1184–1195. https://doi.org/10.1056/NEJMoa2109682", "volume": "385", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2022.105372", "doi-asserted-by": "publisher", "key": "268_CR66", "unstructured": "Ohashi H, Hishiki T, Akazawa D, Kim KS, Woo J, Shionoya K et al (2022) Different efficacies of neutralizing antibodies and antiviral drugs on SARS-CoV-2 Omicron subvariants, BA.1 and BA.2. Antiviral Res. https://doi.org/10.1016/j.antiviral.2022.105372" }, { "DOI": "10.1126/science.abm8143", "author": "YJ Park", "doi-asserted-by": "publisher", "first-page": "449", "issue": "6579", "journal-title": "Science", "key": "268_CR67", "unstructured": "Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC et al (2022) Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 375(6579):449–454. https://doi.org/10.1126/science.abm8143", "volume": "375", "year": "2022" }, { "DOI": "10.1101/2023.02.08.23285654", "doi-asserted-by": "publisher", "key": "268_CR68", "unstructured": "Patel V, Levick B, Boult S, Gibbons DC, Drysdale M, Lloyd EJ et al (2023) Characteristics and outcomes of COVID-19 patients presumed to be treated with sotrovimab in NHS hospitals in England. medRxiv. https://doi.org/10.1101/2023.02.08.23285654" }, { "DOI": "10.1016/0022-1759(94)00275-2", "author": "RS Peebles Jr", "doi-asserted-by": "publisher", "first-page": "77", "issue": "1", "journal-title": "J Immunol Methods", "key": "268_CR69", "unstructured": "Peebles RS Jr, Liu MC, Lichtenstein LM, Hamilton RG (1995) IgA, IgG and IgM quantification in bronchoalveolar lavage fluids from allergic rhinitics, allergic asthmatics, and normal subjects by monoclonal antibody-based immunoenzymetric assays. J Immunol Methods 179(1):77–86. https://doi.org/10.1016/0022-1759(94)00275-2", "volume": "179", "year": "1995" }, { "DOI": "10.1101/2022.03.05.483133", "doi-asserted-by": "publisher", "key": "268_CR70", "unstructured": "Piepenbrink MS, Park J-G, Deshpande A, Loos A, Ye C, Basu M et al (2022) Potent universal-coronavirus therapeutic activity mediated by direct respiratory administration of a Spike S2 domain-specific human neutralizing monoclonal antibody. bioRxiv. https://doi.org/10.1101/2022.03.05.483133" }, { "DOI": "10.1126/science.abj3321", "author": "D Pinto", "doi-asserted-by": "publisher", "first-page": "1109", "issue": "6559", "journal-title": "Science", "key": "268_CR71", "unstructured": "Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP et al (2021) Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373(6559):1109–1116. https://doi.org/10.1126/science.abj3321", "volume": "373", "year": "2021" }, { "DOI": "10.1016/j.annonc.2021.07.015", "author": "F Pommeret", "doi-asserted-by": "publisher", "journal-title": "Ann Oncol", "key": "268_CR72", "unstructured": "Pommeret F, Colomba J, Bigenwald C, Laparra A, Bockel S, Bayle A et al (2021) Bamlanivimab+ etesevimab therapy induces SARS-CoV-2 immune escape mutations and secondary clinical deterioration in COVID-19 patients with B-cell malignancies. Ann Oncol. https://doi.org/10.1016/j.annonc.2021.07.015", "year": "2021" }, { "DOI": "10.1101/2023.09.11.557206", "doi-asserted-by": "crossref", "key": "268_CR73", "unstructured": "Qu P, Xu K, Faraone JN, Goodarzi N, Zheng Y-M, Carlin C et al (2023) Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 Omicron BA.2.86 and FLip variants. Cell. https://doi.org/10.1016/j.cell.2023.12.026" }, { "DOI": "10.1016/j.celrep.2023.112443", "doi-asserted-by": "publisher", "key": "268_CR74", "unstructured": "Qu P, Faraone JN, Evans JP, Zheng YM, Carlin C, Anghelina M et al (2023) Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants. Cell Rep 42(5):112443. https://doi.org/10.1016/j.celrep.2023.112443" }, { "DOI": "10.1016/j.tips.2020.07.004", "author": "A Renn", "doi-asserted-by": "publisher", "first-page": "815", "issue": "11", "journal-title": "Trends Pharmacol Sci", "key": "268_CR75", "unstructured": "Renn A, Fu Y, Hu X, Hall MD, Simeonov A (2020) Fruitful neutralizing antibody pipeline brings hope to defeat SARS-Cov-2. Trends Pharmacol Sci 41(11):815–829. https://doi.org/10.1016/j.tips.2020.07.004", "volume": "41", "year": "2020" }, { "key": "268_CR76", "unstructured": "Reuters (2022) GSK-Vir therapy has neutralising activity against Omicron sub-variant, data shows. Accessed online at https://www.reuters.com/business/healthcare-pharmaceuticals/gsk-vir-therapy-works-against-omicron-sub-variant-data-suggests-2022-02-10/ on 15 Feb 2022" }, { "DOI": "10.1128/aac.01285-13", "author": "GJ Robbie", "doi-asserted-by": "publisher", "first-page": "6147", "issue": "12", "journal-title": "Antimicrob Agents Chemother", "key": "268_CR77", "unstructured": "Robbie GJ, Criste R, Dall’acqua WF, Jensen K, Patel NK, Losonsky GA et al (2013) A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother 57(12):6147–6153. https://doi.org/10.1128/aac.01285-13", "volume": "57", "year": "2013" }, { "DOI": "10.1101/2021.10.02.21264415%JmedRxiv", "doi-asserted-by": "publisher", "key": "268_CR78", "unstructured": "Sabin AP, Richmond CS, Kenny PA (2022) Emergence and onward transmission of a SARS-CoV-2 E484K variant among household contacts of a bamlanivimab-treated patient. Diagn Microbiol Infect Dis 103(1):115656. https://doi.org/10.1101/2021.10.02.21264415%JmedRxiv" }, { "DOI": "10.1038/s41586-023-06649-6", "doi-asserted-by": "publisher", "key": "268_CR79", "unstructured": "Sanderson T, Hisner R, Donovan-Banfield I, Peacock T, Ruis C (2023) A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature. https://doi.org/10.1038/s41586-023-06649-6" }, { "DOI": "10.3389/fimmu.2019.01296", "doi-asserted-by": "publisher", "key": "268_CR80", "unstructured": "Saunders KO (2019) Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01296" }, { "DOI": "10.1084/jem.20201993", "doi-asserted-by": "publisher", "key": "268_CR81", "unstructured": "Schäfer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S et al (2020) Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivoIn vivo efficacy of anti–SARS-CoV-2 antibodies. J Exp Med 218(3). https://doi.org/10.1084/jem.20201993" }, { "DOI": "10.1093/protein/gzw040", "author": "T Schlothauer", "doi-asserted-by": "publisher", "first-page": "457", "issue": "10", "journal-title": "Protein Eng Des Select PEDS", "key": "268_CR82", "unstructured": "Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C et al (2016) Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Select PEDS 29(10):457–466. https://doi.org/10.1093/protein/gzw040", "volume": "29", "year": "2016" }, { "DOI": "10.1016/S1473-3099(21)00751-9", "author": "WH Self", "doi-asserted-by": "publisher", "first-page": "622", "issue": "5", "journal-title": "Lancet Infect Dis", "key": "268_CR83", "unstructured": "Self WH, Sandkovsky U, Reilly CS, Vock DM, Gottlieb RL, Mack M et al (2022) Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect Dis 22(5):622–635. https://doi.org/10.1016/S1473-3099(21)00751-9", "volume": "22", "year": "2022" }, { "DOI": "10.1101/2023.09.02.556033", "doi-asserted-by": "publisher", "key": "268_CR84", "unstructured": "Sheward DJ, Yang Y, Westerberg M, Öling S, Muschiol S, Sato K et al (2023) Sensitivity of BA.2.86 to prevailing neutralising antibody responses. Lancet Infect Dis. https://doi.org/10.1101/2023.09.02.556033" }, { "DOI": "10.3389/fimmu.2021.752003", "doi-asserted-by": "publisher", "key": "268_CR85", "unstructured": "Shrestha LB, Tedla N, Bull RA (2021) Broadly-neutralizing antibodies against emerging SARS-CoV-2 variants. Front Immunol 12:752003. https://doi.org/10.3389/fimmu.2021.752003" }, { "key": "268_CR86", "unstructured": "Some States Still Pushing Ineffective Covid Antibody Treatments (2022). Accessed online at https://www.medscape.com/viewarticle/967020. Accessed on 26 April 2022" }, { "DOI": "10.1080/22221751.2023.2212806", "doi-asserted-by": "publisher", "key": "268_CR87", "unstructured": "Song R, Zeng G, Yu J, Meng X, Chen X, Li J et al (2023) Post-exposure prophylaxis with SA58 (anti-SARS-COV-2 monoclonal antibody) nasal spray for the prevention of symptomatic COVID-19 in healthy adult workers: a randomized, single-blind, placebo-controlled clinical study. Emerg Microbes Infect 2212806. https://doi.org/10.1080/22221751.2023.2212806" }, { "DOI": "10.1101/2022.03.21.22272672", "doi-asserted-by": "crossref", "key": "268_CR88", "unstructured": "Stadler E, Chai KL, Schlub TE, Cromer D, Polizzotto MN, Kent SJ et al (2022a) Determinants of passive antibody efficacy in SARS-CoV-2 infection. Lancet Microbe. https://doi.org/10.1016/S2666-5247(23)00194-5" }, { "DOI": "10.1101/2022.11.22.22282199", "doi-asserted-by": "crossref", "key": "268_CR89", "unstructured": "Stadler E, Burgess MT, Schlub TE, Chai KL, McQuilten ZK, Wood EM et al (2022b) Monoclonal antibody levels and protection from COVID-19. Nat Commun. https://doi.org/10.1038/s41467-023-40204-1" }, { "DOI": "10.1038/s41467-022-33864-y", "author": "DJ Sullivan", "doi-asserted-by": "publisher", "first-page": "6478", "issue": "1", "journal-title": "Nat Comm", "key": "268_CR90", "unstructured": "Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D (2022) Analysis of anti-Omicron neutralizing antibody titers in different convalescent plasma sources. Nat Comm 13(1):6478. https://doi.org/10.1038/s41467-022-33864-y", "volume": "13", "year": "2022" }, { "DOI": "10.1101/2022.11.25.517977", "doi-asserted-by": "publisher", "key": "268_CR91", "unstructured": "Sullivan DJ, Franchini M, Senefeld JW, Joyner MJ, Casadevall A, Focosi D (2023) Plasma after both SARS-CoV-2 boosted vaccination and COVID-19 potently neutralizes BQ1.1 and XBB. J General Virol. https://doi.org/10.1101/2022.11.25.517977" }, { "DOI": "10.1007/s40265-021-01626-7", "author": "YY Syed", "doi-asserted-by": "publisher", "first-page": "2133", "issue": "18", "journal-title": "Drugs", "key": "268_CR92", "unstructured": "Syed YY (2021) Regdanvimab: first approval. Drugs 81(18):2133–2137. https://doi.org/10.1007/s40265-021-01626-7", "volume": "81", "year": "2021" }, { "DOI": "10.1038/s41598-022-07952-4", "doi-asserted-by": "publisher", "key": "268_CR93", "unstructured": "Titong A, Gallolu Kankanamalage S, Dong J, Huang B, Spadoni N, Wang B et al (2022) First-in-class trispecific VHH-Fc based antibody with potent prophylactic and therapeutic efficacy against SARS-CoV-2 and variants. Sci Rep 12(1):4163. https://doi.org/10.1038/s41598-022-07952-4" }, { "DOI": "10.1038/s41586-021-03817-4", "author": "MA Tortorici", "doi-asserted-by": "publisher", "first-page": "103", "issue": "7874", "journal-title": "Nature", "key": "268_CR94", "unstructured": "Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F et al (2021) Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 597(7874):103–108. https://doi.org/10.1038/s41586-021-03817-4", "volume": "597", "year": "2021" }, { "DOI": "10.1101/2022.12.22.521201", "doi-asserted-by": "crossref", "key": "268_CR95", "unstructured": "Touret F, Giraud E, Bourret J, Donati F, Tran-Rajau J, Chiaravalli J et al (2022) Enhanced neutralization escape to therapeutic monoclonal antibodies by SARS-CoV-2 Omicron sub-lineages. iScience. https://doi.org/10.1016/j.isci.2023.106413" }, { "key": "268_CR96", "unstructured": "Update on AZD7442 STORM CHASER trial in post-exposure prevention of symptomatic COVID-19 (2022). Accessed online at https://www.astrazeneca.com/media-centre/press-releases/2021/update-on-azd7442-storm-chaser-trial.html on 21 Feb 2022" }, { "DOI": "10.1016/S1473-3099(23)00575-3", "doi-asserted-by": "publisher", "key": "268_CR97", "unstructured": "Uriu K, Ito J, Kosugi Y, Tanaka YL, Mugita Y, Guo Z et al (2023) Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00575-3" }, { "key": "268_CR98", "unstructured": "US Food and Drug Administration (FDA) (2021) Clinical memorandum Re: EUA 26382. Product: COVID-19 Convalescent Plasma. Issued on December 27, 2021 at https://www.fda.gov/media/141477/download" }, { "DOI": "10.1016/j.antiviral.2022.105252", "author": "L Vangeel", "doi-asserted-by": "publisher", "journal-title": "Antiviral Res", "key": "268_CR99", "unstructured": "Vangeel L, De Jonghe S, Maes P, Slechten B, Raymenants J, André E et al (2022) Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198:105252. https://doi.org/10.1016/j.antiviral.2022.105252", "volume": "198", "year": "2022" }, { "DOI": "10.1016/j.jinf.2022.07.014", "author": "C Vellas", "doi-asserted-by": "publisher", "first-page": "e162", "issue": "5", "journal-title": "J Infect", "key": "268_CR100", "unstructured": "Vellas C, Kamar N, Izopet J (2022) Resistance mutations in SARS-CoV-2 Omicron variant after tixagevimab-cilgavimab treatment. J Infect 85(5):e162–e163. https://doi.org/10.1016/j.jinf.2022.07.014", "volume": "85", "year": "2022" }, { "DOI": "10.1016/j.cell.2022.12.018", "author": "Q Wang", "doi-asserted-by": "publisher", "first-page": "279", "issue": "2", "journal-title": "Cell", "key": "268_CR101", "unstructured": "Wang Q, Iketani S, Li Z, Liu L, Guo Y, Huang Y et al (2023b) Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186(2):279–86.e8. https://doi.org/10.1016/j.cell.2022.12.018", "volume": "186", "year": "2023" }, { "DOI": "10.1101/2023.02.07.527406", "doi-asserted-by": "publisher", "key": "268_CR102", "unstructured": "Wang X, Jiang S, Jiang S, Li X, Ai J, Lin K et al (2023a) Neutralization of SARS-CoV-2 BQ.1.1 and XBB.1.5 by breakthrough infection sera from previous and current waves in China. bioRxiv. https://doi.org/10.1101/2023.02.07.527406" }, { "DOI": "10.1101/2023.08.21.553968", "doi-asserted-by": "publisher", "key": "268_CR103", "unstructured": "Wang Q, Guo Y, Zhang RM, Ho J, Mohri H, Valdez R et al. (2023c) Antibody neutralization of emerging SARS-CoV-2: EG.5.1 and XBC.1.6. bioRxiv. https://doi.org/10.1101/2023.08.21.553968" }, { "author": "C Webber", "key": "268_CR104", "unstructured": "Webber C, Beavon R, Thomas S, Chang LA, Cohen T, Perez J (2023) Trial in progress: a Phase I/III, randomised, modified double-blind, placebo- and active-controlled pre-exposure prophylaxis study of the SARS-CoV-2–neutralising antibody AZD3152 (SUPERNOVA). ECCMID, Copenhagen", "volume-title": "Trial in progress: a Phase I/III, randomised, modified double-blind, placebo- and active-controlled pre-exposure prophylaxis study of the SARS-CoV-2–neutralising antibody AZD3152 (SUPERNOVA)", "year": "2023" }, { "DOI": "10.1056/NEJMoa2108163", "author": "DM Weinreich", "doi-asserted-by": "publisher", "issue": "23", "journal-title": "N Engl J Med", "key": "268_CR105", "unstructured": "Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R et al (2021) REGEN-COV antibody combination and outcomes in outpatients with Covid-19. N Engl J Med 385(23):e81. https://doi.org/10.1056/NEJMoa2108163", "volume": "385", "year": "2021" }, { "DOI": "10.1172/jci128437", "author": "P Weitzenfeld", "doi-asserted-by": "publisher", "first-page": "3952", "issue": "9", "journal-title": "J Clin Investig", "key": "268_CR106", "unstructured": "Weitzenfeld P, Bournazos S, Ravetch JV (2019) Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J Clin Investig 129(9):3952–3962. https://doi.org/10.1172/jci128437", "volume": "129", "year": "2019" }, { "DOI": "10.1016/j.jmb.2007.02.024", "author": "H Wu", "doi-asserted-by": "publisher", "first-page": "652", "issue": "3", "journal-title": "J Mol Biol", "key": "268_CR107", "unstructured": "Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM, Patel NK et al (2007) Development of Motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 368(3):652–665. https://doi.org/10.1016/j.jmb.2007.02.024", "volume": "368", "year": "2007" }, { "DOI": "10.1016/s0140-6736(22)01938-9", "author": "MY Wu", "doi-asserted-by": "publisher", "first-page": "2193", "issue": "10369", "journal-title": "Lancet", "key": "268_CR108", "unstructured": "Wu MY, Carr EJ, Harvey R, Mears HV, Kjaer S, Townsley H et al (2022a) WHO’s therapeutics and COVID-19 living guideline on mAbs needs to be reassessed. Lancet 400(10369):2193–2196. https://doi.org/10.1016/s0140-6736(22)01938-9", "volume": "400", "year": "2022" }, { "DOI": "10.3389/fimmu.2022.865401", "author": "X Wu", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "268_CR109", "unstructured": "Wu X, Wang Y, Cheng L, Ni F, Zhu L, Ma S et al (2022b) Short-term instantaneous prophylaxis and efficient treatment against SARS-CoV-2 in hACE2 mice conferred by an intranasal nanobody (Nb22). Front Immunol 13:865401. https://doi.org/10.3389/fimmu.2022.865401", "volume": "13", "year": "2022" }, { "DOI": "10.1016/S1473-3099(23)00278-5", "doi-asserted-by": "publisher", "key": "268_CR110", "unstructured": "Yamasoba D, Uriu K, Plianchaisuk A, Kosugi Y, Pan L, Zahradnik J et al (2023) Virological characteristics of the SARS-CoV-2 Omicron XBB.1.16 variant. Lancet Infect Dis 23(6):655–656. https://doi.org/10.1016/S1473-3099(23)00278-5" }, { "DOI": "10.1016/S1473-3099(23)00573-X", "doi-asserted-by": "publisher", "key": "268_CR111", "unstructured": "Yang S, Yu Y, Jian F, Song W, Yisimayi A, Chen X et al (2023a) Antigenicity and infectivity characterization of SARS-CoV-2 BA.2.86. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(23)00573-X" }, { "DOI": "10.1101/2023.11.13.566860", "doi-asserted-by": "publisher", "key": "268_CR112", "unstructured": "Yang S, Yu Y, Xu Y, Jian F, Song W, Yisimayi A et al (2023b) Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect Dis. https://doi.org/10.1101/2023.11.13.566860" }, { "DOI": "10.1038/nbt.1601", "author": "J Zalevsky", "doi-asserted-by": "publisher", "first-page": "157", "issue": "2", "journal-title": "Nat Biotechnol", "key": "268_CR113", "unstructured": "Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL, Sproule TJ et al (2010) Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 28(2):157–159. https://doi.org/10.1038/nbt.1601", "volume": "28", "year": "2010" }, { "DOI": "10.1093/infdis/jiab247", "author": "S Zhou", "doi-asserted-by": "publisher", "first-page": "415", "issue": "3", "journal-title": "J Infect Dis", "key": "268_CR114", "unstructured": "Zhou S, Hill CS, Sarkar S, Tse LV, Woodburn BMD, Schinazi RF et al (2021) β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis 224(3):415–419. https://doi.org/10.1093/infdis/jiab247", "volume": "224", "year": "2021" }, { "DOI": "10.3390/v14061334", "doi-asserted-by": "crossref", "key": "268_CR115", "unstructured": "Zhou H, Tada T, Dcosta BM, Landau NR (2022) SARS-CoV-2 Omicron BA.2 variant evades neutralization by therapeutic monoclonal antibodies. Viruses. https://doi.org/10.3390/v14061334" }, { "DOI": "10.1016/j.immuni.2023.02.005", "doi-asserted-by": "crossref", "key": "268_CR116", "unstructured": "Zhou P, Song G, He W-t, Beutler N, Tse LV, Martinez DR et al (2022b) Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease. Immunity. https://doi.org/10.1016/j.immuni.2023.02.005" }, { "DOI": "10.1126/scitranslmed.abi9215", "doi-asserted-by": "crossref", "key": "268_CR117", "unstructured": "Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D et al (2022c) A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abi9215" } ], "reference-count": 117, "references-count": 117, "relation": {}, "resource": { "primary": { "URL": "https://link.springer.com/10.1007/82_2024_268" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Monoclonal Antibody Therapies Against SARS-CoV-2: Promises and Realities", "type": "book-chapter", "update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit