Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchFluvoxamineFluvoxamine (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

All Studies   Meta Analysis       

Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity

Alkafaas et al., BMC Public Health, doi:10.1186/s12889-024-17747-z
Feb 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
27th treatment shown to reduce risk in November 2021, now with p = 0.00014 from 21 studies, recognized in 3 countries.
No treatment is 100% effective. Protocols combine treatments.
5,300+ studies for 116 treatments. c19early.org
In Silico molecular docking analysis evaluating 71 functional inhibitors of acid sphingomyelinase (FIASMAs), showing that FIASMAs may prevent SARS-CoV-2 cell entry and infection via inhibiting ceramide platform formation that facilitates viral uptake. Dilazep, emetine, pimozide, carvedilol, mebeverine, cepharanthine, hydroxyzine, astemizole, sertindole, and bepridil showed higher predicted binding affinity and inhibition potential compared to the candidate drug amiodarone.
4 preclinical studies support the efficacy of fluvoxamine for COVID-19:
Fluvoxamine may inhibit SARS-CoV-2 cell entry by preventing the formation of ceramide platforms that facilitates viral uptake1 and may help restore autophagic processes disrupted by NSP6, thereby reducing SARS-CoV-2 replication and improving host cellular defenses3.
Alkafaas et al., 6 Feb 2024, peer-reviewed, 18 authors. Contact: samar.alkafas@science.tanta.edu.eg, samarsamy2017@yahoo.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperFluvoxamineAll
Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity
Samar Sami Alkafaas, Abanoub Mosaad Abdallah, Mai H Hassan, Aya Misbah Hussien, Sara Samy Elkafas, Samah A Loutfy, Abanoub Mikhail, Omnia G Murad, Mohamed I Elsalahaty, Mohamed Hessien, Rami M Elshazli, Fatimah A Alsaeed, Ahmed Ezzat Ahmed, Hani K Kamal, Wael Hafez, Mohamed T El-Saadony, Khaled A El-Tarabily, Soumya Ghosh
BMC Public Health, doi:10.1186/s12889-024-17747-z
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = -12.58 kcal/mol), emetine (S = -11.65 kcal/ mol), pimozide (S = -11.29 kcal/mol), carvedilol (S = -11.28 kcal/mol), mebeverine (S = -11.14 kcal/mol), cepharanthine (S = -11.06 kcal/mol), hydroxyzin (S = -10.96 kcal/mol), astemizole (S = -10.81 kcal/mol), sertindole (S = -10.55 kcal/mol), and bepridil (S = -10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = -10.43 kcal/mol), making them better options for inhibition.
Declarations Ethics approval and consent to participate Not applicable. Consent for publication Not applicable. Financial interest All authors declare that they have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication. Competing interests The authors declare no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Aizaki, Lee, Sung, Ishiko, Lai, Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts, Virology
Akinyemi, Ns, Ft, Fakorede, Ho et al., Extended-spectrum Beta-lactamases Encoding Genes among Salmonella Enterica serovar Typhi Isolates in Patients with Typhoid Fever from four Academic Medical Centers in Lagos, Nigeria Revista de investigacion clinica
Al-Qaisi, Garawi, Karawi, Hammood, Abdallah et al., Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies, Spectrochim Acta Part A Mol Biomol Spectrosc
Alduhaidhawi, Alhuchaimi, Al-Mayah, Mt, Alkafaas et al., Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater, Infection and Drug Resistance
Alhouri, Salloum, Harfouch, Soumya, Possible side effects of using detergents during the Covid19 pandemic in Syria, Ann Clin Cases
Alkafaas, Abdallah, Ghosh, Loutfy, Elkaffas et al., Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection, Reviews in Medical Virology
Alkafaas, Abdallah, Hussien, Bedair, Abdo et al., A study on the effect of natural products against the transmission of B.1.1. 529 Omicron, Virol J
Alkafaas, Elsalahaty, Ismail, Radwan, Elkafas et al., The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target, Cancer cell Interna, doi:10.1186/s12935-024-03221-8
Alkafaas, Loutfy, Diab, Hessien, Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/ Akt inhibition in luminal A breast cancer cells, Med Oncol
Alves, Magarkar, Horta, Lima, Bunker et al., Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies, Sci Rep
Alves, Ribeiro, Horta, Lima, Nunes et al., A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity, J R Soc Interface
Antonescu, Mcgraw, Klip, Reciprocal regulation of endocytosis and metabolism, Cold Spring Harb Perspect Biol
Ausili, Torrecillas, Aranda, Mollinedo, Gajate et al., Edelfosine is incorporated into rafts and alters their organization, J Phys Chem B
Avota, Gulbins, Schneider-Schaulies, DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells, PLoS Pathog
Bailly, Vergoten, Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?, Pharmacol Ther
Bakillah, Hejji, Almasaud, Jami, Hawwari et al., Lipid raft integrity and cellular cholesterol homeostasis are critical for SARS-CoV-2 entry into cells, Nutrients
Barnard, Day, Bailey, Heiner, Montgomery et al., Is the anti-psychotic, 10-(3-(dimethylamino)propyl)phenothiazine (promazine), a potential drug with which to treat SARS infections? Lack of efficacy of promazine on SARS-CoV replication in a mouse model, Antiviral Res
Berquand, Fa, Dufrene, Mingeot-Leclercq, Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability, Pharm Res
Carpinteiro, Edwards, Hoffmann, Kochs, Gripp et al., Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells, Cell Rep Med
Carpinteiro, Edwards, Hoffmann, Kochs, Gripp et al., Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells, Cell Reports Medicine
Carpinteiro, Gripp, Hoffmann, Pöhlmann, Hoertel et al., Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells, Trends Biochem Sci
Castaldo, Aimo, Castiglione, Padalino, Emdin et al., Safety and Efficacy of Amiodarone in a Patient With COVID-19, JACC Case Rep
Castro, Fedorov, Hornillos, Delgado, Acuña et al., Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids, J Phys Chem B
Chavarría, Vázquez, Cherit, Bello, Suastegui et al., Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia by COVID-19, Comput Struct Biotechnol J
Chemical, None
Chen, Pang, Chen, Ye, Liu et al., The Acid Sphingomyelinase Inhibitor Amitriptyline Ameliorates TNF-α-Induced Endothelial Dysfunction, Cardiovasc Drugs Ther
Chen, Shinn, Itkin, Eastman, Bostwick et al., Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2, Front Pharmacol
Chen, Shinn, Itkin, Eastman, Bostwick et al., Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2, Front Pharmacol
Chen, Xu, Pradhan, Gorshkov, Petersen et al., Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles, ACS Pharmacol Transl Sci
Cheng, Rao, Mehra, COVID-19 treatment: Combining anti-inflammatory and antiviral therapeutics using a network-based approach, Cleve Clin J Med
Choi, Aizaki, Lai, Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release, J Virol
Choy, Wong, Kaewpreedee, Sia, Chen et al., Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro, Antiviral Res
Corre, Loas, Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): an opportunity against SARS-CoV-2 infection?, J Clin Pharm Ther
Coutard, Valle, Lamballerie, Canard, Seidah et al., The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res
Daisy, Daniel, Rasmus, Yuling, Liuliu et al., Modulating the transcriptional landscape of SARS-CoV-2 as an effective method for developing antiviral compounds, bioRxiv
Danthi, Chow, Cholesterol removal by methyl-β-cyclodextrin inhibits poliovirus entry, J Virol
Darquennes, Corre, Moine, Loas, Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and Reduced Risk of Death in COVID-19 Patients: A Retrospective Cohort Study, Pharmaceuticals
Das, Sarmah, Lyndem, Roy, An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study, J Biomol Struct Dyn
Donaldson, Jackson, ARF family G proteins and their regulators: roles in membrane transport, development and disease, Nat Rev Mol Cell Biol
Duarte, Copertino, Jr, Iñiguez, Marston et al., Identifying FDA-approved drugs with multimodal properties against COVID-19 using a datadriven approach and a lung organoid model of SARS-CoV-2 entry, Mol Med
Esen, Schreiner, Jendrossek, Lang, Fassbender et al., Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells, Apoptosis
Fantini, Scala, Chahinian, Yahi, Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int J Antimicrob Agents
Fecchi, Anticoli, Peruzzu, Iessi, Gagliardi et al., Coronavirus interplay with lipid rafts and autophagy unveils promising therapeutic targets, Front Microbiol
Ferlinz, Hurwitz, Moczall, Lansmann, Schuchman et al., Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis, Eur J Biochem
Fred, Kuivanen, Ugurlu, Casarotto, Levanov et al., Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro, Front Pharmacol
Frick, Bright, Riento, Bray, Merrified et al., Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding, Curr Biol
Fugmann, Hausser, Schöffler, Schmid, Pfizenmaier et al., Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein, J Cell Biol
Gault, Obeid, Hannun, An overview of sphingolipid metabolism: from synthesis to breakdown. Sphingolipids as signaling and regulatory molecules
Ge, Lu, Hou, Lv, Wang et al., Azelastine inhibits viropexis of SARS-CoV-2 spike pseudovirus by binding to SARS-CoV-2 entry receptor ACE2, Virology
Ge, Wang, Hou, Lv, Wang et al., Repositioning of histamine H(1) receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2, Eur J Pharmacol
Gelemanović, Vidović, Stepanić, Trajković, Identification of 37 Heterogeneous Drug Candidates for Treatment of COVID-19 via a Rational Transcriptomics-Based Drug Repurposing Approach, Pharmaceuticals
Gelemanović, Vidović, Stepanić, Trajković, Identification of 37 heterogeneous drug candidates for treatment of COVID-19 via a rational transcriptomics-based drug repurposing approach, Pharmaceuticals
Ghosh, Al-Sharify, Maleka, Onyeaka, Maleke et al., Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations, Environ Sci Pollut Res
Ghosh, Bornman, Zafer, Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand?, J Infect Public Health
Glebov, Bright, Nichols, Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells, Nat Cell Biol
Goh, Sorkin, Sandvig, Deurs, Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis, Cold Spring Harb Perspect Biol
Gomide, Thomé, Santos, Ferreira, Faça et al., Disrupting membrane raft domains by alkylphospholipids, Biochimica et Biophysica Acta (BBA)-Biomembranes
Gopal, Rehman, Chadha, Qiu, Colella, Matrigel influences morphology and cathepsin B distribution of prostate cancer PC3 cells, Oncol Rep
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Gorelik, Illes, Heinz, Superti-Furga, Nagar, Crystal structure of mammalian acid sphingomyelinase, Nat Commun
Grassmé, Gulbins, Brenner, Ferlinz, Sandhoff et al., Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells, Cell
Grassmé, Jekle, Riehle, Schwarz, Berger et al., CD95 signaling via ceramide-rich membrane rafts, J Biol Chem
Grim, Abcejo, Barnes, Sathish, Smelter et al., Caveolae and propofol effects on airway smooth muscle, Br J Anaesth
Guo, Huang, Yuan, Wei, Gao et al., The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain, PLoS ONE
Gurung, Ali, Lee, Farah, Km, The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp, Saudi J Biol Sci
Hajjo, Tropsha, A systems biology workflow for drug and vaccine repurposing: identifying small-molecule BCG mimics to reduce or prevent COVID-19 mortality, Pharm Res
Hannun, Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat Rev Mol Cell Biol
Hansen, Sandvig, Van Deurs, The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations, J Cell Biol
Hauck, Grassmé, Bock, Jendrossek, Ferlinz et al., Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae, FEBS Lett
Heinrich, Wickel, Schneider-Brachert, Sandberg, Gahr et al., Cathepsin D targeted by acid sphingomyelinase-derived ceramide, EMBO J
Henseler, Klein, Glombitza, Suziki, Sandhoff, Expression of the three alternative forms of the sphingolipid activator protein precursor in baby hamster kidney cells and functional assays in a cell culture system, J Biol Chem
Heron, Shinitzky, Zamir, Samuel, Adaptive modulations of brain membrane lipid fluidity in drug addiction and denervation supersensitivity, Biochem Pharmacol
Hessien, Donia, Tabll, Adly, Abdelhafez et al., Mechanistic-Based Classification of Endocytosis-Related Inhibitors: Does It Aid in Assigning Drugs against SARS-CoV-2?, Viruses
Hoertel, Blachier, Blanco, Olfson, Massetti et al., A stochastic agent-based model of the SARS-CoV-2 epidemic in France, Nat Med
Hoertel, Sánchez-Rico, Gulbins, Kornhuber, Carpinteiro et al., Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study, Clin Pharmacol Ther
Hoertel, Sánchez-Rico, Gulbins, Kornhuber, Carpinteiro et al., Association between FIASMA psychotropic medications and reduced risk of intubation or death in individuals with psychiatric disorders hospitalized for severe COVID-19: an observational multicenter study, Transl Psychiatry
Hoertel, Sánchez-Rico, Vernet, Beeker, Jannot et al., Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study, Mol Psychiatry
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Hou, Ge, Li, Wang, He et al., Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis, Chem Biol Interact
Hu, Zhao, Li, Cheng, Sun, Effect of tetracaine on dynamic reorganization of lipid membranes, Biochimica et Biophysica Acta (BBA)-Biomembranes
Hu, Zhu, Yang, Lin, Yang, The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells, Oncotarget
Huang, Li, Sadaoka, Tang, Yamamoto et al., Human herpesvirus 6 envelope cholesterol is required for virus entry, J Gen Virol
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan China, The lancet
Huotari, Helenius, Endosome maturation, EMBO J
Hurwitz, Ferlinz, Sandhoff, The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts, Bio Chem Hoppe-Seyler
Hurwitz, Ferlinz, Vielhaber, Moczall, Sandhoff, Processing of human acid sphingomyelinase in normal and I-cell fibroblasts, J Biol Chem
Imamura, Sakurai, Enami, Shibukawa, Nishi et al., iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility, FEBS Open Bio
Irannejad, GPCR signaling along the endocytic pathway, Curr Opin Cell Biol
Jade, Ayyamperumal, Tallapaneni, Nanjan, Barge et al., Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PL(PRO) and 3CL(PRO) proteases, Eur J Pharmacol
Jade, Ayyamperumal, Tallapaneni, Nanjan, Barge et al., Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases, Eur J Pharmacol
Janabi, Molecular Docking Analysis of Anti-Severe Acute Respiratory Syndrome-Coronavirus 2 Ligands against Spike Glycoprotein and the 3-Chymotrypsin-Like Protease, J Med Signals Sens
Jehi, Ji, Milinovich, Erzurum, Rubin et al., Individualizing Risk Prediction for Positive Coronavirus Disease 2019 Testing: Results From 11,672 Patients, Chest
Jeon, Ko, Lee, Choi, Byun et al., Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs, Antimicrob Agents Chemother
Jeon, Ko, Lee, Choi, Byun et al., Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs, Antimicrob Agents Chemother
Kamata, Manno, Ozaki, Takakuwa, Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsα in rafts is essential for signal transduction, Am J Hematol
Kaneko, Takimoto, Sugiyama, Seki, Kawaguchi et al., Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors, Immunopharmacol Immunotoxicol
Kirkham, Fujita, Chadda, Nixon, Kurzchalia et al., Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles, J Cell Biol
Klutzny, Lesche, Keck, Kaulfuss, Schlicker et al., Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death, Cell Death Dis
Kornhuber, Hoertel, Gulbins, The acid sphingomyelinase/ceramide system in COVID-19, Mol Psychiatry
Kornhuber, Muehlbacher, Trapp, Pechmann, Friedl et al., Identification of Novel Functional Inhibitors of Acid Sphingomyelinase, PLOS ONE
Kornhuber, Muehlbacher, Trapp, Pechmann, Friedl et al., Identification of novel functional inhibitors of acid sphingomyelinase, PLoS ONE
Kornhuber, Tripal, Reichel, Terfloth, Bleich et al., Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model, J Med Chem
Kumari, Mg, Mayor, Endocytosis unplugged: multiple ways to enter the cell, Cell Res
Kölzer, Werth, Sandhoff, Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine, FEBS Lett
Lacour, Hammann, Grazide, Lagadic-Gossmann, Athias et al., Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells, Can Res
Lansmann, Schuette, Bartelsen, Hoernschemeyer, Linke et al., Human acid sphingomyelinase: Assignment of the disulfide bond pattern, Eur J Biochem
Le, Andreoletti, Oskotsky, Vallejo-Gracia, Rosales et al., Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19, Sci Rep
Le, Andreoletti, Oskotsky, Vallejo-Gracia, Rosales et al., Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19, Sci Rep
Lefrancois, Zeng, Hassan, Canuel, Morales, The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin, EMBO J
Lenze, Mattar, Zorumski, Stevens, Schweiger et al., Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial, JAMA
Liu, Liu, Liang, Meng, Greenbaum et al., Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics, Pharmaceutics
Liu, Zhou, Li, Garner, Watkins et al., Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases
Loas, Corre, Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection, Pharmaceuticals
Loas, Corre, Update on functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection, Pharmaceuticals
Mahase, Covid-19: death rate is 0.66% and increases with age, study estimates, BMJ
Maldonado-Báez, Williamson, Donaldson, Clathrin-independent endocytosis: a cargo-centric view, Exp Cell Res
Mathewson, Bishop, Yao, Kemp, Ren et al., Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2, J Gen Virol
Mayor, Parton, Donaldson, Clathrin-independent pathways of endocytosis, Cold Spring Harb Perspect Biol
Mañes, Del Real, Martínez-A C, Pathogens: raft hijackers, Nat Rev Immunol
Meng, Liu, Lou, Yang, Emodin suppresses lipopolysaccharideinduced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells, Br J Pharmacol
Meskini, Rami, Maroofi, Ghosh, Siadat et al., An overview on the epidemiology and immunology of COVID-19, J Infect Public Health
Miller, Adhikary, Kolokoltsov, Davey, Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection, J Virol
Mitra, Oskeritzian, Payne, Beaven, Milstien et al., Role of ABCC1 in export of sphingosine-1-phosphate from mast cells, Proc Natl Acad Sci
Mizogami, Tsuchiya, Membrane interactivity of anesthetic adjuvant dexmedetomidine discriminable from clonidine and enantiomeric levomedetomidine, Journal of Advances in Medicine and Medical Research
Morin-Dewaele, Bartier, Berry, Brillet, López-Molina et al., Desloratadine, an FDAapproved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry, Sci Rep
Moya, Dautry-Varsat, Goud, Louvard, Boquet, Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin, J Cell Biol
Naz, Asif, Alwutayd, Sarfaraz, Abbasi et al., Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach, Molecules
Nazeam, Mohammed, Raafat, Houssein, Elkafoury et al., Based on principles and insights of covid-19 epidemiology, genome sequencing, and pathogenesis: Retrospective analysis of sinigrin and prolixinrx (fluphenazine) provides off-label drug candidates, Slas Discovery
Ni, Morales, The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor, Traffic
Nicolau, Burrage, Parton, Hancock, Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane, Mol Cell Biol
Nomura, Kiyota, Suzaki, Kataoka, Ohe et al., Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae, J Virol
Norinder, Tuck, Norgren, Kos, Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19, Biomed Pharmacother
Norinder, Tuck, Norgren, Kos, Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19, Biomed Pharmacother
O'donovan, Imami, Eby, Henkel, Creeden et al., Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach, Sci Rep
O'donovan, Imami, Eby, Henkel, Creeden et al., Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach, Sci Rep
Patel, Chowdhury, Noorani, Bickel, Huang, Isoflurane increases cell membrane fluidity significantly at clinical concentrations, Biochimica et Biophysica Acta (BBA)-Biomembranes
Plaze, Attali, Prot, Petit, Blatzer et al., Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine, Int J Antimicrob Agents
Preston, Abbott, Begley, Transcytosis of macromolecules at the blood-brain barrier, Adv Pharmacol
Radenkovic, Chawla, Pirro, Sahebkar, Banach, Cholesterol in relation to COVID-19: should we care about it?, J Clin Med
Radhakrishna, Donaldson, ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway, J Cell Biol
Raheem, Hussein, Ghosh, Alkafaas, Bloemfontein, Resistance of Klebsiella pneumoniae from Different Clinical Samples to Penicillin, Cephalosporin. Carbapenem and Fluoroquinolone, Teikyo Medical Journal
Rao, Vaidyanathan, Rengasamy, Oommen, Somaiya et al., Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases, J Lipids
Rebillard, Tekpli, Meurette, Sergent, Lemoigne-Muller et al., Cisplatininduced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells, Can Res
Reznikov, Norris, Vashisht, Bluhm, Li et al., Identification of antiviral antihistamines for COVID-19 repurposing, Biochem Biophys Res Commun
Rodrigues-Diez, Tejera-Muñoz, Marquez-Exposito, Rayego-Mateos, Sanchez et al., Statins: could an old friend help in the fight against COVID-19?, Br J Pharmacol
Ruan, Liu, Guo, He, Huang et al., SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12), J Med Virol
Sahoo, Bhattamisra, Das, Tiwari, Tiwari et al., Computational Approach to Combat COVID-19 Infection: Emerging Tools for Accelerating Drug Research, Curr Drug Discov Technol
Sakuragawa, Sakuragawa, Kuwabara, Pentchev, Barranger et al., Niemann-Pick disease experimental model: sphingomyelinase reduction induced by AY-9944, Science
Sauvat, Ciccosanti, Colavita, Rienzo, Castilletti et al., On-target versus off-target effects of drugs the replication of SARS-CoV-2, Cell Death Dis
Sauvat, Ciccosanti, Colavita, Rienzo, Castilletti et al., On-target versus offtarget effects of drugs inhibiting the replication of SARS-CoV-2, Cell Death Dis
Schissel, Jiang X-C, Tweedie-Hardman, Jeong, Camejo, Najib et al., Secretory sphingomyelinase, a product Alkafaas et al. BMC Health (2024) 24:395 of the sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH: implications for atherosclerotic lesion development, J Biol Chem
Schloer, Brunotte, Goretzko, Mecate-Zambrano, Korthals et al., Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine, Emerging microbes & infections
Schneider-Schaulies, Schneider-Schaulies, Sphingolipids in viral infection, Biol Chem
Scott, Vacca, Gruenberg, Endosome maturation, transport and functions, Semin Cell Dev Biol
Sencanski, Perovic, Pajovic, Adzic, Paessler et al., Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method, Molecules
Sierra-Valdez, Ruiz-Suárez, Delint-Ramirez, Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors, Biochimica et Biophysica Acta (BBA)-Biomembranes
Sorice, Misasi, Riitano, Manganelli, Martellucci et al., Targeting lipid rafts as a strategy against coronavirus, Front Cell Dev Biol
Tang, Liu, Zhang, Xu, Wen, Cytokine storm in COVID-19: the current evidence and treatment strategies, Front Immunol
Tani, Shiokawa, Kaname, Kambara, Mori et al., Involvement of ceramide in the propagation of Japanese encephalitis virus, J Virol
Tay, Poh, Rénia, Macary, Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nat Rev Immunol
Tay, Poh, Rénia, Macary, Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nature Reviews Immunology
Thorp, Gallagher, Requirements for CEACAMs and cholesterol during murine coronavirus cell entry, J Virol
Touret, Gilles, Barral, Nougairède, Van Helden et al., In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication, Sci Rep
Tsuchiya, Mizogami, Interaction of drugs with lipid raft membrane domains as a possible target, Drug Target Insights
Tsuchiya, Mizogami, Takakura, Reversed-phase liquid chromatographic retention and membrane activity relationships of local anesthetics, J Chromatogr A
Tsukamoto, Hirotsu, Kumazoe, Goto, Sugihara et al., Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells, Biochemical Journal
Turkyilmaz, Almeida, Sl, Effects of isoflurane, halothane, and chloroform on the interactions and lateral organization of lipids in the liquid-ordered phase, Langmuir
Törnquist, Asghar, Srinivasan, Korhonen, Lindholm, Sphingolipids as modulators of SARS-CoV-2 infection, Front Cell Dev Biol
Udrea, Avram, Nistorescu, Pascu, Mo, Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking, J Photochem Photobiol B
Udrea, Nistorescu, Pascu, Mo, Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking, J Photochem Photobiol, B
Vatansever, Yang, Drelich, Kratch, Cho et al., Bepridil is potent against SARS-CoV-2 in vitro, Proc Natl Acad Sci
Vatansever, Yang, Drelich, Kratch, Cho et al., Bepridil is potent against SARS-CoV-2 in vitro, Proc Natl Acad Sci U S A
Verstraeten, Jaggers, Fraga, Oteiza, Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol, Biochimica et Biophysica Acta (BBA)-Biomembranes
Verstraeten, Oteiza, Fraga, Membrane effects of cocoa procyanidins in liposomes and Jurkat T cells, Biol Res
Viard, Parolini, Sargiacomo, Fecchi, Ramoni et al., Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells, J Virol
Villoutreix, Krishnamoorthy, Tamouza, Leboyer, Beaune, Chemoinformatic analysis of psychotropic and antihistaminic drugs in the light of experimental anti-SARS-CoV-2 activities, Advances and applications in bioinformatics and chemistry
Wang, Lu, Ge, Hou, Hu et al., Astemizole as a drug to inhibit the effect of SARS-COV-2 in vitro, Microb Pathog
Wang, Yuan, Sun, Mao, Tan et al., Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system, Virology
Wei, Wang, Shi, Liu, Yang et al., Saikosaponin a inhibits LPSinduced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages, Oncotarget
Weston, Coleman, Haupt, Logue, Matthews et al., Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo, J Virol
Weston, Coleman, Haupt, Logue, Matthews et al., Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo, J Virol
Wnętrzak, Łątka, Makyła-Juzak, Zemla, Dynarowicz-Łątka, The influence of an antitumor lipid-erucylphosphocholine-on artificial lipid raft system modeled as Langmuir monolayer, Mol Membr Biol
Wähe, Kasmapour, Schmaderer, Liebl, Sandhoff et al., Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin, J Cell Sci
Węder, Mach, Hąc-Wydro, Wydro, Studies on the interactions of anticancer drug-Minerval-with membrane lipids in binary and ternary Langmuir monolayers, Biochimica et Biophysica Acta (BBA)-Biomembranes
Xia, Gamble, Rye, Wang, Hii et al., Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway, Proc Natl Acad Sci
Xiao, Wang, Chang, Wang, Dong et al., Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2, Front Immunol
Xiong, Cao, Shen, Ma, Shi et al., Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro, Front Pharmacol
Xiong, Huang, Poda, Pomès, Privé, Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis, J Mol Biol
Yan, Zhang, Li, Xia, Guo et al., Base estructural para el reconocimiento de SARS-CoV-2 por la enzima convertidora de angiotensina 2 (ACE2) humana completa, Science
Yang, Lv, Wang, Gao, Yao et al., Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein, Virology
Yang, Pei R-J, Li, Ma, -N et al., Identification of SARS-CoV-2 entry inhibitors among already approved drugs, Acta Pharmacol Sin
Yi, Choo, Cho, Kim, Kim et al., Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption, Biochem Biophys Res Commun
Yoshida, Takashima, Nishio, Effect of dibucaine hydrochloride on raft-like lipid domains in model membrane systems, MedChemComm
Yuan, Yin, Meng, Chan, Ye et al., Clofazimine broadly inhibits coronaviruses including SARS-CoV-2, Nature
Zhou, Cho, Plowman, Hancock, Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane, J Biol Chem
Zhou, Hou, Shen, Huang, Martin et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov
Zhou, Hou, Shen, Mehra, Kallianpur et al., A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19, PLoS Biol
Zhou, Metcalf, Garman, Edmunds, Qiu et al., Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease, Nat Commun
溝上真樹, Plant components exhibit pharmacological activities and drug interactions by acting on lipid membranes, Pharmacognosy Communications
DOI record: { "DOI": "10.1186/s12889-024-17747-z", "ISSN": [ "1471-2458" ], "URL": "http://dx.doi.org/10.1186/s12889-024-17747-z", "abstract": "<jats:title>Abstract</jats:title><jats:p>Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused &gt; 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form “platforms” that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = − 12.58 kcal/mol), emetine (S = − 11.65 kcal/mol), pimozide (S = − 11.29 kcal/mol), carvedilol (S = − 11.28 kcal/mol), mebeverine (S = − 11.14 kcal/mol), cepharanthine (S = − 11.06 kcal/mol), hydroxyzin (S = − 10.96 kcal/mol), astemizole (S = − 10.81 kcal/mol), sertindole (S = − 10.55 kcal/mol), and bepridil (S = − 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = − 10.43 kcal/mol), making them better options for inhibition.</jats:p>", "alternative-id": [ "17747" ], "article-number": "395", "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "24 October 2023" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "11 January 2024" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 3, "value": "6 February 2024" }, { "group": { "label": "Declarations", "name": "EthicsHeading" }, "name": "Ethics", "order": 1 }, { "group": { "label": "Ethics approval and consent to participate", "name": "EthicsHeading" }, "name": "Ethics", "order": 2, "value": "Not applicable." }, { "group": { "label": "Consent for publication", "name": "EthicsHeading" }, "name": "Ethics", "order": 3, "value": "Not applicable." }, { "group": { "label": "Financial interest", "name": "EthicsHeading" }, "name": "Ethics", "order": 4, "value": "All authors declare that they have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication." }, { "group": { "label": "Competing interests", "name": "EthicsHeading" }, "name": "Ethics", "order": 5, "value": "The authors declare no competing interests." } ], "author": [ { "affiliation": [], "family": "Alkafaas", "given": "Samar Sami", "sequence": "first" }, { "affiliation": [], "family": "Abdallah", "given": "Abanoub Mosaad", "sequence": "additional" }, { "affiliation": [], "family": "Hassan", "given": "Mai H.", "sequence": "additional" }, { "affiliation": [], "family": "Hussien", "given": "Aya Misbah", "sequence": "additional" }, { "affiliation": [], "family": "Elkafas", "given": "Sara Samy", "sequence": "additional" }, { "affiliation": [], "family": "Loutfy", "given": "Samah A.", "sequence": "additional" }, { "affiliation": [], "family": "Mikhail", "given": "Abanoub", "sequence": "additional" }, { "affiliation": [], "family": "Murad", "given": "Omnia G.", "sequence": "additional" }, { "affiliation": [], "family": "Elsalahaty", "given": "Mohamed I.", "sequence": "additional" }, { "affiliation": [], "family": "Hessien", "given": "Mohamed", "sequence": "additional" }, { "affiliation": [], "family": "Elshazli", "given": "Rami M.", "sequence": "additional" }, { "affiliation": [], "family": "Alsaeed", "given": "Fatimah A.", "sequence": "additional" }, { "affiliation": [], "family": "Ahmed", "given": "Ahmed Ezzat", "sequence": "additional" }, { "affiliation": [], "family": "Kamal", "given": "Hani K.", "sequence": "additional" }, { "affiliation": [], "family": "Hafez", "given": "Wael", "sequence": "additional" }, { "affiliation": [], "family": "El-Saadony", "given": "Mohamed T.", "sequence": "additional" }, { "affiliation": [], "family": "El-Tarabily", "given": "Khaled A.", "sequence": "additional" }, { "affiliation": [], "family": "Ghosh", "given": "Soumya", "sequence": "additional" } ], "container-title": "BMC Public Health", "container-title-short": "BMC Public Health", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2024, 2, 6 ] ], "date-time": "2024-02-06T15:03:35Z", "timestamp": 1707231815000 }, "deposited": { "date-parts": [ [ 2024, 2, 6 ] ], "date-time": "2024-02-06T17:35:48Z", "timestamp": 1707240948000 }, "funder": [ { "name": "The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB)." }, { "DOI": "10.13039/501100007950", "doi-asserted-by": "crossref", "name": "Tanta University" } ], "indexed": { "date-parts": [ [ 2024, 2, 7 ] ], "date-time": "2024-02-07T00:53:59Z", "timestamp": 1707267239534 }, "is-referenced-by-count": 0, "issue": "1", "issued": { "date-parts": [ [ 2024, 2, 6 ] ] }, "journal-issue": { "issue": "1", "published-online": { "date-parts": [ [ 2024, 12 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2024, 2, 6 ] ], "date-time": "2024-02-06T00:00:00Z", "timestamp": 1707177600000 } }, { "URL": "https://creativecommons.org/licenses/by/4.0", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2024, 2, 6 ] ], "date-time": "2024-02-06T00:00:00Z", "timestamp": 1707177600000 } } ], "link": [ { "URL": "https://link.springer.com/content/pdf/10.1186/s12889-024-17747-z.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/article/10.1186/s12889-024-17747-z/fulltext.html", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/content/pdf/10.1186/s12889-024-17747-z.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1186", "published": { "date-parts": [ [ 2024, 2, 6 ] ] }, "published-online": { "date-parts": [ [ 2024, 2, 6 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.1038/s41591-020-1001-6", "author": "N Hoertel", "doi-asserted-by": "publisher", "first-page": "1417", "issue": "9", "journal-title": "Nat Med", "key": "17747_CR1", "unstructured": "Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, Limosin F, Leleu H. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med. 2020;26(9):1417–21.", "volume": "26", "year": "2020" }, { "DOI": "10.1016/j.jiph.2021.02.011", "author": "S Ghosh", "doi-asserted-by": "publisher", "first-page": "555", "issue": "5", "journal-title": "J Infect Public Health", "key": "17747_CR2", "unstructured": "Ghosh S, Bornman C, Zafer MM. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? J Infect Public Health. 2021;14(5):555–60.", "volume": "14", "year": "2021" }, { "author": "A Alhouri", "first-page": "1023", "issue": "4", "journal-title": "Ann Clin Cases", "key": "17747_CR3", "unstructured": "Alhouri A, Salloum A, Harfouch RM, Soumya G. Possible side effects of using detergents during the Covid19 pandemic in Syria. Ann Clin Cases. 2020;1(4):1023.", "volume": "1", "year": "2020" }, { "DOI": "10.1016/j.jiph.2021.07.021", "author": "M Meskini", "doi-asserted-by": "publisher", "first-page": "1284", "issue": "10", "journal-title": "J Infect Public Health", "key": "17747_CR4", "unstructured": "Meskini M, Rami MR, Maroofi P, Ghosh S, Siadat SD, Sheikhpour M. An overview on the epidemiology and immunology of COVID-19. J Infect Public Health. 2021;14(10):1284–98.", "volume": "14", "year": "2021" }, { "DOI": "10.1007/s11356-022-21652-6", "doi-asserted-by": "crossref", "key": "17747_CR5", "unstructured": "Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, et al. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. Environ Sci Pollut Res. 2022l;29(39):58628–47." }, { "DOI": "10.3390/v15051040", "author": "M Hessien", "doi-asserted-by": "publisher", "first-page": "1040", "issue": "5", "journal-title": "Viruses", "key": "17747_CR6", "unstructured": "Hessien M, Donia T, Tabll AA, Adly E, Abdelhafez TH, Attia A, Alkafaas SS, Kuna L, Glasnovic M, Cosic V. Mechanistic-Based Classification of Endocytosis-Related Inhibitors: Does It Aid in Assigning Drugs against SARS-CoV-2? Viruses. 2023;15(5):1040.", "volume": "15", "year": "2023" }, { "DOI": "10.1016/S0140-6736(20)30183-5", "author": "C Huang", "doi-asserted-by": "publisher", "first-page": "497", "issue": "10223", "journal-title": "The lancet", "key": "17747_CR7", "unstructured": "Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. The lancet. 2020;395(10223):497–506.", "volume": "395", "year": "2020" }, { "DOI": "10.1186/s12985-023-02160-6", "author": "SS Alkafaas", "doi-asserted-by": "publisher", "first-page": "191", "issue": "1", "journal-title": "Virol J", "key": "17747_CR8", "unstructured": "Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA. A study on the effect of natural products against the transmission of B.1.1. 529 Omicron. Virol J. 2023;20(1):191.", "volume": "20", "year": "2023" }, { "DOI": "10.1136/bmj.m1327", "author": "E Mahase", "doi-asserted-by": "publisher", "first-page": "1327", "journal-title": "BMJ", "key": "17747_CR9", "unstructured": "Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ. 2020;369:1327.", "volume": "369", "year": "2020" }, { "DOI": "10.3389/fimmu.2020.01708", "author": "Y Tang", "doi-asserted-by": "publisher", "first-page": "1708", "journal-title": "Front Immunol", "key": "17747_CR10", "unstructured": "Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708.", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.02.052", "author": "M Hoffmann", "doi-asserted-by": "publisher", "first-page": "271", "issue": "2", "journal-title": "Cell", "key": "17747_CR11", "unstructured": "Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e278.", "volume": "181", "year": "2020" }, { "DOI": "10.1016/S0021-9258(17)37705-0", "author": "R Hurwitz", "doi-asserted-by": "publisher", "first-page": "5440", "issue": "7", "journal-title": "J Biol Chem", "key": "17747_CR12", "unstructured": "Hurwitz R, Ferlinz K, Vielhaber G, Moczall H, Sandhoff K. Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J Biol Chem. 1994;269(7):5440–5.", "volume": "269", "year": "1994" }, { "DOI": "10.1074/jbc.273.5.2738", "author": "SL Schissel", "doi-asserted-by": "publisher", "first-page": "2738", "issue": "5", "journal-title": "J Biol Chem", "key": "17747_CR13", "unstructured": "Schissel SL. Jiang X-c, Tweedie-Hardman J, Jeong T-s, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH: implications for atherosclerotic lesion development. J Biol Chem. 1998;273(5):2738–46.", "volume": "273", "year": "1998" }, { "DOI": "10.1074/jbc.M101207200", "author": "H Grassmé", "doi-asserted-by": "publisher", "first-page": "20589", "issue": "23", "journal-title": "J Biol Chem", "key": "17747_CR14", "unstructured": "Grassmé H, Jekle A, Riehle A, Schwarz H. Berger Jr, Sandhoff K, Kolesnick R, Gulbins E: CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001;276(23):20589–96.", "volume": "276", "year": "2001" }, { "DOI": "10.1128/JVI.00136-12", "author": "ME Miller", "doi-asserted-by": "publisher", "first-page": "7473", "issue": "14", "journal-title": "J Virol", "key": "17747_CR15", "unstructured": "Miller ME, Adhikary S, Kolokoltsov AA, Davey RA. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012;86(14):7473–83.", "volume": "86", "year": "2012" }, { "DOI": "10.1371/journal.ppat.1001290", "author": "E Avota", "doi-asserted-by": "publisher", "issue": "2", "journal-title": "PLoS Pathog", "key": "17747_CR16", "unstructured": "Avota E, Gulbins E, Schneider-Schaulies S. DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 2011;7(2): e1001290.", "volume": "7", "year": "2011" }, { "DOI": "10.1128/JVI.02499-09", "author": "H Tani", "doi-asserted-by": "publisher", "first-page": "2798", "issue": "6", "journal-title": "J Virol", "key": "17747_CR17", "unstructured": "Tani H, Shiokawa M, Kaname Y, Kambara H, Mori Y, Abe T, Moriishi K, Matsuura Y. Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol. 2010;84(6):2798–807.", "volume": "84", "year": "2010" }, { "DOI": "10.1023/A:1012445925628", "author": "M Esen", "doi-asserted-by": "publisher", "first-page": "431", "issue": "6", "journal-title": "Apoptosis", "key": "17747_CR18", "unstructured": "Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis. 2001;6(6):431–9.", "volume": "6", "year": "2001" }, { "DOI": "10.1016/S0092-8674(00)80448-1", "author": "H Grassmé", "doi-asserted-by": "publisher", "first-page": "605", "issue": "5", "journal-title": "Cell.", "key": "17747_CR19", "unstructured": "Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997;91(5):605–15.", "volume": "91", "year": "1997" }, { "DOI": "10.1016/S0014-5793(00)01851-2", "author": "CR Hauck", "doi-asserted-by": "publisher", "first-page": "260", "issue": "3", "journal-title": "FEBS Lett", "key": "17747_CR20", "unstructured": "Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 2000;478(3):260–6.", "volume": "478", "year": "2000" }, { "author": "KO Akinyemi", "first-page": "165", "issue": "3", "journal-title": "Nigeria Revista de investigacion clinica", "key": "17747_CR21", "unstructured": "Akinyemi KO, Al-Khafaji NS, Al-Alaq FT, Fakorede CO, Al-Dahmoshi HO, Iwalokun BA, Akpabio I, Alkafaas SS, Saki M. Extended-spectrum Beta-lactamases Encoding Genes among Salmonella Enterica serovar Typhi Isolates in Patients with Typhoid Fever from four Academic Medical Centers in Lagos. Nigeria Revista de investigacion clinica. 2022;74(3):165–71.", "volume": "74", "year": "2022" }, { "DOI": "10.2147/IDR.S358248", "author": "AHM Alduhaidhawi", "doi-asserted-by": "publisher", "first-page": "1143", "journal-title": "Infection and Drug Resistance", "key": "17747_CR22", "unstructured": "Alduhaidhawi AHM, AlHuchaimi SN, Al-Mayah TA, Al-Ouqaili MT, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infection and Drug Resistance. 2022;15:1143.", "volume": "15", "year": "2022" }, { "author": "HQ Raheem", "first-page": "1", "issue": "06", "journal-title": "Carbapenem and Fluoroquinolone Teikyo Medical Journal", "key": "17747_CR23", "unstructured": "Raheem HQ, Hussein EF, Ghosh S, AlKafaas SS, Bloemfontein SA. Resistance of Klebsiella pneumoniae from Different Clinical Samples to Penicillin, Cephalosporin. Carbapenem and Fluoroquinolone Teikyo Medical Journal. 2021;44(06):1–8.", "volume": "44", "year": "2021" }, { "DOI": "10.1038/s41380-021-01309-5", "author": "J Kornhuber", "doi-asserted-by": "publisher", "first-page": "307", "issue": "1", "journal-title": "Mol Psychiatry", "key": "17747_CR24", "unstructured": "Kornhuber J, Hoertel N, Gulbins E. The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry. 2022;27(1):307–14.", "volume": "27", "year": "2022" }, { "DOI": "10.1126/science.66749", "author": "N Sakuragawa", "doi-asserted-by": "publisher", "first-page": "317", "issue": "4287", "journal-title": "Science", "key": "17747_CR25", "unstructured": "Sakuragawa N, Sakuragawa M, Kuwabara T, Pentchev PG, Barranger JA, Brady RO. Niemann-Pick disease experimental model: sphingomyelinase reduction induced by AY-9944. Science. 1977;196(4287):317–9.", "volume": "196", "year": "1977" }, { "DOI": "10.1016/S0014-5793(04)00033-X", "author": "M Kölzer", "doi-asserted-by": "publisher", "first-page": "96", "issue": "1–3", "journal-title": "FEBS Lett", "key": "17747_CR26", "unstructured": "Kölzer M, Werth N, Sandhoff K. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett. 2004;559(1–3):96–8.", "volume": "559", "year": "2004" }, { "DOI": "10.1371/journal.pone.0023852", "author": "J Kornhuber", "doi-asserted-by": "publisher", "issue": "8", "journal-title": "PLoS ONE", "key": "17747_CR27", "unstructured": "Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS ONE. 2011;6(8): e23852.", "volume": "6", "year": "2011" }, { "DOI": "10.1046/j.1432-1033.2003.03435.x", "author": "S Lansmann", "doi-asserted-by": "publisher", "first-page": "1076", "issue": "6", "journal-title": "Eur J Biochem", "key": "17747_CR28", "unstructured": "Lansmann S, Schuette CG, Bartelsen O, Hoernschemeyer J, Linke T, Weisgerber J, Sandhoff K. Human acid sphingomyelinase: Assignment of the disulfide bond pattern. Eur J Biochem. 2003;270(6):1076–88.", "volume": "270", "year": "2003" }, { "DOI": "10.1111/j.1432-1033.1997.511_1a.x", "author": "K Ferlinz", "doi-asserted-by": "publisher", "first-page": "511", "issue": "1–2", "journal-title": "Eur J Biochem", "key": "17747_CR29", "unstructured": "Ferlinz K, Hurwitz R, Moczall H, Lansmann S, Schuchman EH, Sandhoff K. Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis. Eur J Biochem. 1997;243(1–2):511–7.", "volume": "243", "year": "1997" }, { "DOI": "10.1016/j.jmb.2016.06.012", "author": "Z-J Xiong", "doi-asserted-by": "publisher", "first-page": "3026", "issue": "15", "journal-title": "J Mol Biol", "key": "17747_CR30", "unstructured": "Xiong Z-J, Huang J, Poda G, Pomès R, Privé GG. Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis. J Mol Biol. 2016;428(15):3026–42.", "volume": "428", "year": "2016" }, { "DOI": "10.1074/jbc.271.14.8416", "author": "M Henseler", "doi-asserted-by": "publisher", "first-page": "8416", "issue": "14", "journal-title": "J Biol Chem", "key": "17747_CR31", "unstructured": "Henseler M, Klein A, Glombitza GJ, Suziki K, Sandhoff K. Expression of the three alternative forms of the sphingolipid activator protein precursor in baby hamster kidney cells and functional assays in a cell culture system. J Biol Chem. 1996;271(14):8416–23.", "volume": "271", "year": "1996" }, { "DOI": "10.1038/ncomms12196", "author": "A Gorelik", "doi-asserted-by": "publisher", "first-page": "1", "issue": "1", "journal-title": "Nat Commun", "key": "17747_CR32", "unstructured": "Gorelik A, Illes K, Heinz LX, Superti-Furga G, Nagar B. Crystal structure of mammalian acid sphingomyelinase. Nat Commun. 2016;7(1):1–9.", "volume": "7", "year": "2016" }, { "DOI": "10.1038/ncomms13082", "author": "Y-F Zhou", "doi-asserted-by": "publisher", "first-page": "1", "issue": "1", "journal-title": "Nat Commun", "key": "17747_CR33", "unstructured": "Zhou Y-F, Metcalf MC, Garman SC, Edmunds T, Qiu H, Wei RR. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat Commun. 2016;7(1):1–10.", "volume": "7", "year": "2016" }, { "DOI": "10.1093/emboj/cdg629", "author": "S Lefrancois", "doi-asserted-by": "publisher", "first-page": "6430", "issue": "24", "journal-title": "EMBO J", "key": "17747_CR34", "unstructured": "Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 2003;22(24):6430–7.", "volume": "22", "year": "2003" }, { "DOI": "10.1242/jcs.067686", "author": "A Wähe", "doi-asserted-by": "publisher", "first-page": "2502", "issue": "14", "journal-title": "J Cell Sci", "key": "17747_CR35", "unstructured": "Wähe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, Griffiths G, Gutierrez MG. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci. 2010;123(14):2502–11.", "volume": "123", "year": "2010" }, { "DOI": "10.1111/j.1600-0854.2006.00429.x", "author": "X Ni", "doi-asserted-by": "publisher", "first-page": "889", "issue": "7", "journal-title": "Traffic", "key": "17747_CR36", "unstructured": "Ni X, Morales CR. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic. 2006;7(7):889–902.", "volume": "7", "year": "2006" }, { "DOI": "10.1007/978-1-4419-6741-1_1", "doi-asserted-by": "crossref", "key": "17747_CR37", "unstructured": "Gault CR, Obeid LM, Hannun YA: An overview of sphingolipid metabolism: from synthesis to breakdown. Sphingolipids as signaling and regulatory molecules 2010:1–23." }, { "DOI": "10.1186/s12935-024-03221-8", "doi-asserted-by": "publisher", "key": "17747_CR38", "unstructured": "Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, HEssien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer cell Interna. 2024. https://doi.org/10.1186/s12935-024-03221-8." }, { "DOI": "10.1155/2013/178910", "doi-asserted-by": "crossref", "key": "17747_CR39", "unstructured": "Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR: Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. J Lipids. 2013;2013:1–12." }, { "DOI": "10.1073/pnas.95.24.14196", "author": "P Xia", "doi-asserted-by": "publisher", "first-page": "14196", "issue": "24", "journal-title": "Proc Natl Acad Sci", "key": "17747_CR40", "unstructured": "Xia P, Gamble JR, Rye K-A, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA. Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci. 1998;95(24):14196–201.", "volume": "95", "year": "1998" }, { "DOI": "10.1073/pnas.0603734103", "author": "P Mitra", "doi-asserted-by": "publisher", "first-page": "16394", "issue": "44", "journal-title": "Proc Natl Acad Sci", "key": "17747_CR41", "unstructured": "Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci. 2006;103(44):16394–9.", "volume": "103", "year": "2006" }, { "DOI": "10.1083/jcb.200612017", "author": "T Fugmann", "doi-asserted-by": "publisher", "first-page": "15", "issue": "1", "journal-title": "J Cell Biol", "key": "17747_CR42", "unstructured": "Fugmann T, Hausser A, Schöffler P, Schmid S, Pfizenmaier K, Olayioye MA. Regulation of secretory transport by protein kinase D–mediated phosphorylation of the ceramide transfer protein. J Cell Biol. 2007;178(1):15–22.", "volume": "178", "year": "2007" }, { "DOI": "10.1038/nrm2329", "author": "YA Hannun", "doi-asserted-by": "publisher", "first-page": "139", "issue": "2", "journal-title": "Nat Rev Mol Cell Biol", "key": "17747_CR43", "unstructured": "Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50.", "volume": "9", "year": "2008" }, { "DOI": "10.3389/fcell.2020.618296", "author": "M Sorice", "doi-asserted-by": "publisher", "journal-title": "Front Cell Dev Biol", "key": "17747_CR44", "unstructured": "Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting lipid rafts as a strategy against coronavirus. Front Cell Dev Biol. 2021;8: 618296.", "volume": "8", "year": "2021" }, { "DOI": "10.1128/JVI.76.22.11584-11595.2002", "author": "M Viard", "doi-asserted-by": "publisher", "first-page": "11584", "issue": "22", "journal-title": "J Virol", "key": "17747_CR45", "unstructured": "Viard M, Parolini I, Sargiacomo M, Fecchi K, Ramoni C, Ablan S, Ruscetti FW, Wang JM, Blumenthal R. Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. J Virol. 2002;76(22):11584–95.", "volume": "76", "year": "2002" }, { "DOI": "10.1128/JVI.78.1.33-41.2004", "author": "P Danthi", "doi-asserted-by": "publisher", "first-page": "33", "issue": "1", "journal-title": "J Virol", "key": "17747_CR46", "unstructured": "Danthi P, Chow M. Cholesterol removal by methyl-β-cyclodextrin inhibits poliovirus entry. J Virol. 2004;78(1):33–41.", "volume": "78", "year": "2004" }, { "DOI": "10.1016/j.virol.2004.03.034", "author": "H Aizaki", "doi-asserted-by": "publisher", "first-page": "450", "issue": "2", "journal-title": "Virology", "key": "17747_CR47", "unstructured": "Aizaki H, Lee K-J. Sung VM-H, Ishiko H, Lai MM: Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology. 2004;324(2):450–61.", "volume": "324", "year": "2004" }, { "DOI": "10.18632/oncotarget.7723", "author": "W Hu", "doi-asserted-by": "publisher", "first-page": "12206", "issue": "11", "journal-title": "Oncotarget", "key": "17747_CR48", "unstructured": "Hu W, Zhu L, Yang X, Lin J, Yang Q. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells. Oncotarget. 2016;7(11):12206.", "volume": "7", "year": "2016" }, { "DOI": "10.1128/JVI.78.6.2682-2692.2004", "author": "EB Thorp", "doi-asserted-by": "publisher", "first-page": "2682", "issue": "6", "journal-title": "J Virol", "key": "17747_CR49", "unstructured": "Thorp EB, Gallagher TM. Requirements for CEACAMs and cholesterol during murine coronavirus cell entry. J Virol. 2004;78(6):2682–92.", "volume": "78", "year": "2004" }, { "DOI": "10.1016/j.virol.2012.02.015", "author": "J Yang", "doi-asserted-by": "publisher", "first-page": "98", "issue": "2", "journal-title": "Virology", "key": "17747_CR50", "unstructured": "Yang J, Lv J, Wang Y, Gao S, Yao Q, Qu D, Ye R. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein. Virology. 2012;427(2):98–106.", "volume": "427", "year": "2012" }, { "DOI": "10.1038/s41577-020-0311-8", "doi-asserted-by": "crossref", "key": "17747_CR51", "unstructured": "Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74." }, { "DOI": "10.1016/j.antiviral.2020.104742", "author": "B Coutard", "doi-asserted-by": "publisher", "journal-title": "Antiviral Res", "key": "17747_CR52", "unstructured": "Coutard B, Valle C, De Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176: 104742.", "volume": "176", "year": "2020" }, { "DOI": "10.1038/s41577-020-0311-8", "doi-asserted-by": "crossref", "key": "17747_CR53", "unstructured": "Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP: The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology 2020, 20(6):363–374." }, { "DOI": "10.1016/j.ijantimicag.2020.105960", "author": "J Fantini", "doi-asserted-by": "publisher", "issue": "5", "journal-title": "Int J Antimicrob Agents", "key": "17747_CR54", "unstructured": "Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55(5): 105960.", "volume": "55", "year": "2020" }, { "DOI": "10.1038/nri1129", "author": "S Mañes", "doi-asserted-by": "publisher", "first-page": "557", "issue": "7", "journal-title": "Nat Rev Immunol", "key": "17747_CR55", "unstructured": "Mañes S, del Real G, Martínez-a C. Pathogens: raft hijackers. Nat Rev Immunol. 2003;3(7):557–68.", "volume": "3", "year": "2003" }, { "DOI": "10.1016/j.virol.2018.12.012", "author": "H Wang", "doi-asserted-by": "publisher", "first-page": "118", "journal-title": "Virology", "key": "17747_CR56", "unstructured": "Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology. 2019;528:118–36.", "volume": "528", "year": "2019" }, { "DOI": "10.1093/bja/aes130", "author": "K Grim", "doi-asserted-by": "publisher", "first-page": "444", "issue": "3", "journal-title": "Br J Anaesth", "key": "17747_CR57", "unstructured": "Grim K, Abcejo A, Barnes A, Sathish V, Smelter D, Ford G, Thompson M, Prakash Y, Pabelick C. Caveolae and propofol effects on airway smooth muscle. Br J Anaesth. 2012;109(3):444–53.", "volume": "109", "year": "2012" }, { "DOI": "10.1016/j.bbamem.2019.183140", "author": "J Patel", "doi-asserted-by": "publisher", "first-page": "183140", "issue": "2", "journal-title": "Biochimica et Biophysica Acta (BBA)-Biomembranes", "key": "17747_CR58", "unstructured": "Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(2):183140.", "volume": "1862", "year": "2020" }, { "DOI": "10.1021/la2035278", "author": "S Turkyilmaz", "doi-asserted-by": "publisher", "first-page": "14380", "issue": "23", "journal-title": "Langmuir", "key": "17747_CR59", "unstructured": "Turkyilmaz S, Almeida PF, Regen SL. Effects of isoflurane, halothane, and chloroform on the interactions and lateral organization of lipids in the liquid-ordered phase. Langmuir. 2011;27(23):14380–5.", "volume": "27", "year": "2011" }, { "DOI": "10.1016/j.bbamem.2016.07.011", "author": "FJ Sierra-Valdez", "doi-asserted-by": "publisher", "first-page": "2603", "issue": "11", "journal-title": "Biochimica et Biophysica Acta (BBA)-Biomembranes", "key": "17747_CR60", "unstructured": "Sierra-Valdez FJ, Ruiz-Suárez J, Delint-Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2016;1858(11):2603–10.", "volume": "1858", "year": "2016" }, { "DOI": "10.1002/ajh.21126", "author": "K Kamata", "doi-asserted-by": "publisher", "first-page": "371", "issue": "5", "journal-title": "Am J Hematol", "key": "17747_CR61", "unstructured": "Kamata K, Manno S, Ozaki M, Takakuwa Y. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsα in rafts is essential for signal transduction. Am J Hematol. 2008;83(5):371–5.", "volume": "83", "year": "2008" }, { "DOI": "10.33393/dti.2020.2185", "author": "H Tsuchiya", "doi-asserted-by": "publisher", "first-page": "34", "journal-title": "Drug Target Insights", "key": "17747_CR62", "unstructured": "Tsuchiya H, Mizogami M. Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights. 2020;14:34.", "volume": "14", "year": "2020" }, { "DOI": "10.1016/j.bbamem.2020.183351", "author": "S Hu", "doi-asserted-by": "publisher", "first-page": "183351", "issue": "9", "journal-title": "Biochimica et Biophysica Acta (BBA)-Biomembranes", "key": "17747_CR63", "unstructured": "Hu S, Zhao T, Li H, Cheng D, Sun Z. Effect of tetracaine on dynamic reorganization of lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(9):183351.", "volume": "1862", "year": "2020" }, { "DOI": "10.1039/C5MD00108K", "author": "K Yoshida", "doi-asserted-by": "publisher", "first-page": "1444", "issue": "8", "journal-title": "MedChemComm", "key": "17747_CR64", "unstructured": "Yoshida K, Takashima A, Nishio I. Effect of dibucaine hydrochloride on raft-like lipid domains in model membrane systems. MedChemComm. 2015;6(8):1444–51.", "volume": "6", "year": "2015" }, { "DOI": "10.1016/j.chroma.2004.08.154", "author": "H Tsuchiya", "doi-asserted-by": "publisher", "first-page": "303", "issue": "1–2", "journal-title": "J Chromatogr A", "key": "17747_CR65", "unstructured": "Tsuchiya H, Mizogami M, Takakura K. Reversed-phase liquid chromatographic retention and membrane activity relationships of local anesthetics. J Chromatogr A. 2005;1073(1–2):303–8.", "volume": "1073", "year": "2005" }, { "DOI": "10.9734/jammr/2019/v29i1130142", "author": "M Mizogami", "doi-asserted-by": "publisher", "first-page": "1", "issue": "11", "journal-title": "Journal of Advances in Medicine and Medical Research", "key": "17747_CR66", "unstructured": "Mizogami M, Tsuchiya H. Membrane interactivity of anesthetic adjuvant dexmedetomidine discriminable from clonidine and enantiomeric levomedetomidine. Journal of Advances in Medicine and Medical Research. 2019;29(11):1–15.", "volume": "29", "year": "2019" }, { "DOI": "10.1016/0006-2952(82)90543-3", "author": "DS Heron", "doi-asserted-by": "publisher", "first-page": "2435", "issue": "14", "journal-title": "Biochem Pharmacol", "key": "17747_CR67", "unstructured": "Heron DS, Shinitzky M, Zamir N, Samuel D. Adaptive modulations of brain membrane lipid fluidity in drug addiction and denervation supersensitivity. Biochem Pharmacol. 1982;31(14):2435–8.", "volume": "31", "year": "1982" }, { "DOI": "10.1074/jbc.M112.348490", "author": "Y Zhou", "doi-asserted-by": "publisher", "first-page": "16586", "issue": "20", "journal-title": "J Biol Chem", "key": "17747_CR68", "unstructured": "Zhou Y, Cho K-J, Plowman SJ, Hancock JF. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem. 2012;287(20):16586–95.", "volume": "287", "year": "2012" }, { "DOI": "10.1021/jp802165n", "author": "A Ausili", "doi-asserted-by": "publisher", "first-page": "11643", "issue": "37", "journal-title": "J Phys Chem B", "key": "17747_CR69", "unstructured": "Ausili A, Torrecillas A, Aranda FJ, Mollinedo F, Gajate C, Corbalan-Garcia S, de Godos A, Gomez-Fernandez JC. Edelfosine is incorporated into rafts and alters their organization. J Phys Chem B. 2008;112(37):11643–54.", "volume": "112", "year": "2008" }, { "DOI": "10.1016/j.bbamem.2013.01.017", "author": "AB Gomide", "doi-asserted-by": "publisher", "first-page": "1384", "issue": "5", "journal-title": "Biochimica et Biophysica Acta (BBA)-Biomembranes", "key": "17747_CR70", "unstructured": "Gomide AB, Thomé CH, Dos Santos G, Ferreira G, Faça VM, Rego EM, Greene LJ, Stábeli RG, Ciancaglini P, Itri R. Disrupting membrane raft domains by alkylphospholipids. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;1828(5):1384–9.", "volume": "1828", "year": "2013" }, { "DOI": "10.1021/jp401407d", "author": "BM Castro", "doi-asserted-by": "publisher", "first-page": "7929", "issue": "26", "journal-title": "J Phys Chem B", "key": "17747_CR71", "unstructured": "Castro BM, Fedorov A, Hornillos V, Delgado J, Acuña AU, Mollinedo F, Prieto M. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids. J Phys Chem B. 2013;117(26):7929–40.", "volume": "117", "year": "2013" }, { "DOI": "10.3109/09687688.2015.1125537", "author": "A Wnętrzak", "doi-asserted-by": "publisher", "first-page": "189", "issue": "5–8", "journal-title": "Mol Membr Biol", "key": "17747_CR72", "unstructured": "Wnętrzak A, Łątka K, Makyła-Juzak K, Zemla J, Dynarowicz-Łątka P. The influence of an antitumor lipid–erucylphosphocholine–on artificial lipid raft system modeled as Langmuir monolayer. Mol Membr Biol. 2015;32(5–8):189–97.", "volume": "32", "year": "2015" }, { "DOI": "10.1016/j.bbamem.2018.05.019", "author": "K Węder", "doi-asserted-by": "publisher", "first-page": "2329", "issue": "11", "journal-title": "Biochimica et Biophysica Acta (BBA)-Biomembranes", "key": "17747_CR73", "unstructured": "Węder K, Mach M, Hąc-Wydro K, Wydro P. Studies on the interactions of anticancer drug-Minerval-with membrane lipids in binary and ternary Langmuir monolayers. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2018;1860(11):2329–36.", "volume": "1860", "year": "2018" }, { "DOI": "10.1158/0008-5472.CAN-03-2787", "author": "S Lacour", "doi-asserted-by": "publisher", "first-page": "3593", "issue": "10", "journal-title": "Can Res", "key": "17747_CR74", "unstructured": "Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel M-T. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Can Res. 2004;64(10):3593–8.", "volume": "64", "year": "2004" }, { "DOI": "10.1158/0008-5472.CAN-07-0353", "author": "A Rebillard", "doi-asserted-by": "publisher", "first-page": "7865", "issue": "16", "journal-title": "Can Res", "key": "17747_CR75", "unstructured": "Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L, Gorria M, Chevanne M, Christmann M, Kaina B. Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Can Res. 2007;67(16):7865–74.", "volume": "67", "year": "2007" }, { "DOI": "10.1007/s11095-004-1885-8", "author": "A Berquand", "doi-asserted-by": "publisher", "first-page": "465", "journal-title": "Pharm Res", "key": "17747_CR76", "unstructured": "Berquand A, Fa N, Dufrene Y, Mingeot-Leclercq M-P. Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm Res. 2005;22:465–75.", "volume": "22", "year": "2005" }, { "DOI": "10.1098/rsif.2017.0408", "author": "AC Alves", "doi-asserted-by": "publisher", "first-page": "20170408", "issue": "133", "journal-title": "J R Soc Interface", "key": "17747_CR77", "unstructured": "Alves AC, Ribeiro D, Horta M, Lima JL, Nunes C, Reis S. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug’s biological activity. J R Soc Interface. 2017;14(133):20170408.", "volume": "14", "year": "2017" }, { "DOI": "10.1038/s41598-017-06445-z", "author": "AC Alves", "doi-asserted-by": "publisher", "first-page": "6343", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR78", "unstructured": "Alves AC, Magarkar A, Horta M, Lima JL, Bunker A, Nunes C, Reis S. Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep. 2017;7(1):6343.", "volume": "7", "year": "2017" }, { "key": "17747_CR79", "unstructured": "溝上真樹: Plant components exhibit pharmacological activities and drug interactions by acting on lipid membranes. Pharmacognosy Communications 2012;2:58–71." }, { "DOI": "10.1080/08923970802135690", "author": "M Kaneko", "doi-asserted-by": "publisher", "first-page": "867", "issue": "4", "journal-title": "Immunopharmacol Immunotoxicol", "key": "17747_CR80", "unstructured": "Kaneko M, Takimoto H, Sugiyama T, Seki Y, Kawaguchi K, Kumazawa Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol Immunotoxicol. 2008;30(4):867–82.", "volume": "30", "year": "2008" }, { "DOI": "10.1042/BJ20111837", "author": "S Tsukamoto", "doi-asserted-by": "publisher", "first-page": "525", "issue": "2", "journal-title": "Biochemical Journal", "key": "17747_CR81", "unstructured": "Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, Tsurudome Y, Suzuki T, Yamashita S, Kim Y. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochemical Journal. 2012;443(2):525–34.", "volume": "443", "year": "2012" }, { "DOI": "10.4067/S0716-97602004000200016", "author": "SV Verstraeten", "doi-asserted-by": "publisher", "first-page": "293", "issue": "2", "journal-title": "Biol Res", "key": "17747_CR82", "unstructured": "Verstraeten SV, Oteiza PI, Fraga CG. Membrane effects of cocoa procyanidins in liposomes and Jurkat T cells. Biol Res. 2004;37(2):293–300.", "volume": "37", "year": "2004" }, { "DOI": "10.1016/j.bbamem.2013.07.023", "author": "SV Verstraeten", "doi-asserted-by": "publisher", "first-page": "2646", "issue": "11", "journal-title": "Biochimica et Biophysica Acta (BBA)-Biomembranes", "key": "17747_CR83", "unstructured": "Verstraeten SV, Jaggers GK, Fraga CG, Oteiza PI. Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;1828(11):2646–53.", "volume": "1828", "year": "2013" }, { "DOI": "10.1111/j.1476-5381.2010.00993.x", "author": "G Meng", "doi-asserted-by": "publisher", "first-page": "1628", "issue": "7", "journal-title": "Br J Pharmacol", "key": "17747_CR84", "unstructured": "Meng G, Liu Y, Lou C, Yang H. Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br J Pharmacol. 2010;161(7):1628–44.", "volume": "161", "year": "2010" }, { "DOI": "10.1016/j.bbrc.2009.05.028", "author": "J-S Yi", "doi-asserted-by": "publisher", "first-page": "154", "issue": "2", "journal-title": "Biochem Biophys Res Commun", "key": "17747_CR85", "unstructured": "Yi J-S, Choo H-J, Cho B-R, Kim H-M, Kim Y-N, Ham Y-M, Ko Y-G. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun. 2009;385(2):154–9.", "volume": "385", "year": "2009" }, { "DOI": "10.18632/oncotarget.9863", "author": "Z Wei", "doi-asserted-by": "publisher", "first-page": "48995", "issue": "31", "journal-title": "Oncotarget", "key": "17747_CR86", "unstructured": "Wei Z, Wang J, Shi M, Liu W, Yang Z, Fu Y. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages. Oncotarget. 2016;7(31):48995.", "volume": "7", "year": "2016" }, { "DOI": "10.3390/nu14163417", "author": "A Bakillah", "doi-asserted-by": "publisher", "first-page": "3417", "issue": "16", "journal-title": "Nutrients", "key": "17747_CR87", "unstructured": "Bakillah A, Hejji FA, Almasaud A, Jami HA, Hawwari A, Qarni AA, Iqbal J, Alharbi NK. Lipid raft integrity and cellular cholesterol homeostasis are critical for SARS-CoV-2 entry into cells. Nutrients. 2022;14(16):3417.", "volume": "14", "year": "2022" }, { "DOI": "10.1111/bph.15166", "author": "RR Rodrigues-Diez", "doi-asserted-by": "publisher", "first-page": "4873", "issue": "21", "journal-title": "Br J Pharmacol", "key": "17747_CR88", "unstructured": "Rodrigues-Diez RR, Tejera-Muñoz A, Marquez-Exposito L, Rayego-Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J. Statins: could an old friend help in the fight against COVID-19? Br J Pharmacol. 2020;177(21):4873–86.", "volume": "177", "year": "2020" }, { "DOI": "10.3389/fcell.2021.689854", "author": "K Törnquist", "doi-asserted-by": "publisher", "first-page": "1574", "journal-title": "Front Cell Dev Biol", "key": "17747_CR89", "unstructured": "Törnquist K, Asghar MY, Srinivasan V, Korhonen L, Lindholm D. Sphingolipids as modulators of SARS-CoV-2 infection. Front Cell Dev Biol. 2021;9:1574.", "volume": "9", "year": "2021" }, { "DOI": "10.1515/hsz-2014-0273", "author": "J Schneider-Schaulies", "doi-asserted-by": "publisher", "first-page": "585", "issue": "6–7", "journal-title": "Biol Chem", "key": "17747_CR90", "unstructured": "Schneider-Schaulies J, Schneider-Schaulies S. Sphingolipids in viral infection. Biol Chem. 2015;396(6–7):585–95.", "volume": "396", "year": "2015" }, { "DOI": "10.1007/s12032-022-01889-4", "author": "SS Alkafaas", "doi-asserted-by": "publisher", "first-page": "35", "issue": "1", "journal-title": "Med Oncol", "key": "17747_CR91", "unstructured": "Alkafaas SS, Loutfy SA, Diab T, Hessien M. Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/Akt inhibition in luminal A breast cancer cells. Med Oncol. 2022;40(1):35.", "volume": "40", "year": "2022" }, { "DOI": "10.1083/jcb.101.2.548", "author": "M Moya", "doi-asserted-by": "publisher", "first-page": "548", "issue": "2", "journal-title": "J Cell Biol", "key": "17747_CR92", "unstructured": "Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985;101(2):548–59.", "volume": "101", "year": "1985" }, { "DOI": "10.1083/jcb.113.4.731", "author": "SH Hansen", "doi-asserted-by": "publisher", "first-page": "731", "issue": "4", "journal-title": "J Cell Biol", "key": "17747_CR93", "unstructured": "Hansen SH, Sandvig K, van Deurs B. The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations. J Cell Biol. 1991;113(4):731–41.", "volume": "113", "year": "1991" }, { "DOI": "10.1002/rmv.2403", "doi-asserted-by": "crossref", "key": "17747_CR94", "unstructured": "Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, ElKaffas SS, Abdel Fattah NF, Hessien M: Insight into the role of clathrin‐mediated endocytosis inhibitors in SARS‐CoV‐2 infection. Reviews in Medical Virology 2022:e2403." }, { "DOI": "10.1016/j.semcdb.2014.03.034", "doi-asserted-by": "crossref", "key": "17747_CR95", "unstructured": "Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10." }, { "DOI": "10.1016/bs.apha.2014.06.001", "author": "JE Preston", "doi-asserted-by": "publisher", "first-page": "147", "journal-title": "Adv Pharmacol", "key": "17747_CR96", "unstructured": "Preston JE, Abbott NJ, Begley DJ. Transcytosis of macromolecules at the blood–brain barrier. Adv Pharmacol. 2014;71:147–63.", "volume": "71", "year": "2014" }, { "DOI": "10.1101/cshperspect.a016964", "author": "CN Antonescu", "doi-asserted-by": "publisher", "issue": "7", "journal-title": "Cold Spring Harb Perspect Biol", "key": "17747_CR97", "unstructured": "Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol. 2014;6(7): a016964.", "volume": "6", "year": "2014" }, { "DOI": "10.1016/j.ceb.2013.10.003", "author": "R Irannejad", "doi-asserted-by": "publisher", "first-page": "109", "journal-title": "Curr Opin Cell Biol", "key": "17747_CR98", "unstructured": "Irannejad R, von Zastrow M. GPCR signaling along the endocytic pathway. Curr Opin Cell Biol. 2014;27:109–16.", "volume": "27", "year": "2014" }, { "DOI": "10.1101/cshperspect.a017459", "author": "LK Goh", "doi-asserted-by": "publisher", "issue": "5", "journal-title": "Cold Spring Harb Perspect Biol", "key": "17747_CR99", "unstructured": "Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5(5): a017459.", "volume": "5", "year": "2013" }, { "DOI": "10.1016/S0021-9258(19)39337-8", "author": "K Sandvig", "doi-asserted-by": "publisher", "first-page": "6382", "issue": "11", "journal-title": "J Biol Chem", "key": "17747_CR100", "unstructured": "Sandvig K, Van Deurs B. Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis. J Biol Chem. 1990;265(11):6382–8.", "volume": "265", "year": "1990" }, { "DOI": "10.1038/emboj.2011.286", "author": "J Huotari", "doi-asserted-by": "publisher", "first-page": "3481", "issue": "17", "journal-title": "EMBO J", "key": "17747_CR101", "unstructured": "Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481–500.", "volume": "30", "year": "2011" }, { "DOI": "10.1101/cshperspect.a016758", "author": "S Mayor", "doi-asserted-by": "publisher", "issue": "6", "journal-title": "Cold Spring Harb Perspect Biol", "key": "17747_CR102", "unstructured": "Mayor S, Parton RG, Donaldson JG. Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol. 2014;6(6): a016758.", "volume": "6", "year": "2014" }, { "DOI": "10.1083/jcb.200407078", "author": "M Kirkham", "doi-asserted-by": "publisher", "first-page": "465", "issue": "3", "journal-title": "J Cell Biol", "key": "17747_CR103", "unstructured": "Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol. 2005;168(3):465–76.", "volume": "168", "year": "2005" }, { "DOI": "10.1038/nrm3117", "author": "JG Donaldson", "doi-asserted-by": "publisher", "first-page": "362", "issue": "6", "journal-title": "Nat Rev Mol Cell Biol", "key": "17747_CR104", "unstructured": "Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12(6):362–75.", "volume": "12", "year": "2011" }, { "DOI": "10.1083/jcb.139.1.49", "author": "H Radhakrishna", "doi-asserted-by": "publisher", "first-page": "49", "issue": "1", "journal-title": "J Cell Biol", "key": "17747_CR105", "unstructured": "Radhakrishna H, Donaldson JG. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol. 1997;139(1):49–61.", "volume": "139", "year": "1997" }, { "DOI": "10.1038/ncb1342", "author": "OO Glebov", "doi-asserted-by": "publisher", "first-page": "46", "issue": "1", "journal-title": "Nat Cell Biol", "key": "17747_CR106", "unstructured": "Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol. 2006;8(1):46–54.", "volume": "8", "year": "2006" }, { "DOI": "10.1016/j.cub.2007.05.078", "author": "M Frick", "doi-asserted-by": "publisher", "first-page": "1151", "issue": "13", "journal-title": "Curr Biol", "key": "17747_CR107", "unstructured": "Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007;17(13):1151–6.", "volume": "17", "year": "2007" }, { "DOI": "10.1016/j.yexcr.2013.08.008", "author": "L Maldonado-Báez", "doi-asserted-by": "publisher", "first-page": "2759", "issue": "18", "journal-title": "Exp Cell Res", "key": "17747_CR108", "unstructured": "Maldonado-Báez L, Williamson C, Donaldson JG. Clathrin-independent endocytosis: a cargo-centric view. Exp Cell Res. 2013;319(18):2759–69.", "volume": "319", "year": "2013" }, { "DOI": "10.1038/cr.2010.19", "author": "S Kumari", "doi-asserted-by": "publisher", "first-page": "256", "issue": "3", "journal-title": "Cell Res", "key": "17747_CR109", "unstructured": "Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20(3):256–75.", "volume": "20", "year": "2010" }, { "DOI": "10.1099/vir.0.81551-0", "author": "H Huang", "doi-asserted-by": "publisher", "first-page": "277", "issue": "2", "journal-title": "J Gen Virol", "key": "17747_CR110", "unstructured": "Huang H, Li Y, Sadaoka T, Tang H, Yamamoto T, Yamanishi K, Mori Y. Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol. 2006;87(2):277–85.", "volume": "87", "year": "2006" }, { "DOI": "10.1128/JVI.78.16.8701-8708.2004", "author": "R Nomura", "doi-asserted-by": "publisher", "first-page": "8701", "issue": "16", "journal-title": "J Virol", "key": "17747_CR111", "unstructured": "Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, Senda T, Fujimoto T. Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol. 2004;78(16):8701–8.", "volume": "78", "year": "2004" }, { "DOI": "10.1128/JVI.79.15.9862-9871.2005", "author": "KS Choi", "doi-asserted-by": "publisher", "first-page": "9862", "issue": "15", "journal-title": "J Virol", "key": "17747_CR112", "unstructured": "Choi KS, Aizaki H, Lai MM. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol. 2005;79(15):9862–71.", "volume": "79", "year": "2005" }, { "DOI": "10.1099/vir.0.2008/003962-0", "author": "AC Mathewson", "doi-asserted-by": "publisher", "first-page": "2741", "issue": "Pt 11", "journal-title": "J Gen Virol", "key": "17747_CR113", "unstructured": "Mathewson AC, Bishop A, Yao Y, Kemp F, Ren J, Chen H, Xu X, Berkhout B, van der Hoek L, Jones IM. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J Gen Virol. 2008;89(Pt 11):2741.", "volume": "89", "year": "2008" }, { "author": "P Gopal", "first-page": "313", "issue": "2", "journal-title": "Oncol Rep", "key": "17747_CR114", "unstructured": "Gopal P, Rehman RU, Chadha KS, Qiu M, Colella R. Matrigel influences morphology and cathepsin B distribution of prostate cancer PC3 cells. Oncol Rep. 2006;16(2):313–20.", "volume": "16", "year": "2006" }, { "DOI": "10.1021/acscentsci.0c00272", "author": "C Liu", "doi-asserted-by": "publisher", "key": "17747_CR115", "unstructured": "Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. In.: ACS Publications; 2020.", "volume-title": "Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases", "year": "2020" }, { "DOI": "10.1128/MCB.26.1.313-323.2006", "author": "DV Nicolau Jr", "doi-asserted-by": "publisher", "first-page": "313", "issue": "1", "journal-title": "Mol Cell Biol", "key": "17747_CR116", "unstructured": "Nicolau DV Jr, Burrage K, Parton RG, Hancock JF. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol Cell Biol. 2006;26(1):313–23.", "volume": "26", "year": "2006" }, { "DOI": "10.1126/science.abb2762", "author": "R Yan", "doi-asserted-by": "publisher", "first-page": "1444", "journal-title": "Science", "key": "17747_CR117", "unstructured": "Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Base estructural para el reconocimiento de SARS-CoV-2 por la enzima convertidora de angiotensina 2 (ACE2) humana completa. Science. 2020;367:1444–8.", "volume": "367", "year": "2020" }, { "DOI": "10.1371/journal.pone.0170123", "author": "H Guo", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "PLoS ONE", "key": "17747_CR118", "unstructured": "Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain. PLoS ONE. 2017;12(1): e0170123.", "volume": "12", "year": "2017" }, { "DOI": "10.1128/JVI.00835-07", "author": "S Barman", "doi-asserted-by": "publisher", "first-page": "12169", "issue": "22", "journal-title": "J Virol", "key": "17747_CR119", "unstructured": "Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol. 2007;81(22):12169–78.", "volume": "81", "year": "2007" }, { "DOI": "10.1016/j.pharmthera.2020.107618", "author": "C Bailly", "doi-asserted-by": "publisher", "journal-title": "Pharmacol Ther", "key": "17747_CR120", "unstructured": "Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020;214: 107618.", "volume": "214", "year": "2020" }, { "author": "K Fecchi", "first-page": "11", "journal-title": "Front Microbiol", "key": "17747_CR121", "unstructured": "Fecchi K, Anticoli S, Peruzzu D, Iessi E, Gagliardi MC, Matarrese P, Ruggieri A. Coronavirus interplay with lipid rafts and autophagy unveils promising therapeutic targets. Front Microbiol. 1821;2020:11.", "volume": "2020", "year": "1821" }, { "DOI": "10.3390/jcm9061909", "author": "D Radenkovic", "doi-asserted-by": "publisher", "first-page": "1909", "issue": "6", "journal-title": "J Clin Med", "key": "17747_CR122", "unstructured": "Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M. Cholesterol in relation to COVID-19: should we care about it? J Clin Med. 2020;9(6):1909.", "volume": "9", "year": "2020" }, { "DOI": "10.1371/journal.pone.0023852", "doi-asserted-by": "crossref", "key": "17747_CR123", "unstructured": "Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, et al. Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLOS ONE. 2011;6(8):1–13." }, { "DOI": "10.1093/emboj/18.19.5252", "author": "M Heinrich", "doi-asserted-by": "publisher", "first-page": "5252", "issue": "19", "journal-title": "EMBO J", "key": "17747_CR124", "unstructured": "Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Brunner J, Krönke M, Schütze S. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18(19):5252–63.", "volume": "18", "year": "1999" }, { "DOI": "10.1016/j.jbc.2021.100701", "doi-asserted-by": "crossref", "key": "17747_CR125", "unstructured": "Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ, Kamler M, Kornhuber J, Becker KA, Gulbins E. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021;296:1–12." }, { "DOI": "10.1016/j.tibs.2010.08.001", "author": "SM Pitson", "doi-asserted-by": "publisher", "first-page": "97", "issue": "2", "journal-title": "Trends Biochem Sci", "key": "17747_CR126", "unstructured": "Pitson SM. Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci. 2011;36(2):97–107.", "volume": "36", "year": "2011" }, { "DOI": "10.1021/jm070524a", "author": "J Kornhuber", "doi-asserted-by": "publisher", "first-page": "219", "issue": "2", "journal-title": "J Med Chem", "key": "17747_CR127", "unstructured": "Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of new functional inhibitors of acid sphingomyelinase using a structure− property− activity relation model. J Med Chem. 2008;51(2):219–37.", "volume": "51", "year": "2008" }, { "DOI": "10.2147/AABC.S304649", "author": "BO Villoutreix", "doi-asserted-by": "publisher", "first-page": "71", "journal-title": "Advances and applications in bioinformatics and chemistry: AABC", "key": "17747_CR128", "unstructured": "Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic analysis of psychotropic and antihistaminic drugs in the light of experimental anti-SARS-CoV-2 activities. Advances and applications in bioinformatics and chemistry: AABC. 2021;14:71.", "volume": "14", "year": "2021" }, { "DOI": "10.1038/s41398-022-01804-5", "author": "N Hoertel", "doi-asserted-by": "publisher", "first-page": "1", "issue": "1", "journal-title": "Transl Psychiatry", "key": "17747_CR129", "unstructured": "Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Abellán M, de la Muela P, Vernet R, Beeker N, Neuraz A. Association between FIASMA psychotropic medications and reduced risk of intubation or death in individuals with psychiatric disorders hospitalized for severe COVID-19: an observational multicenter study. Transl Psychiatry. 2022;12(1):1–11.", "volume": "12", "year": "2022" }, { "DOI": "10.1371/journal.pbio.3000970", "author": "Y Zhou", "doi-asserted-by": "publisher", "issue": "11", "journal-title": "PLoS Biol", "key": "17747_CR130", "unstructured": "Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020;18(11): e3000970.", "volume": "18", "year": "2020" }, { "DOI": "10.1128/JVI.01218-20", "author": "S Weston", "doi-asserted-by": "publisher", "first-page": "e01218", "issue": "21", "journal-title": "J Virol", "key": "17747_CR131", "unstructured": "Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J Virol. 2020;94(21):e01218–01220.", "volume": "94", "year": "2020" }, { "DOI": "10.3390/ph14070691", "author": "G Loas", "doi-asserted-by": "publisher", "first-page": "691", "issue": "7", "journal-title": "Pharmaceuticals", "key": "17747_CR132", "unstructured": "Loas G, Le Corre P. Update on functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Pharmaceuticals. 2021;14(7):691.", "volume": "14", "year": "2021" }, { "DOI": "10.1002/jmv.26222", "author": "Z Ruan", "doi-asserted-by": "publisher", "first-page": "389", "issue": "1", "journal-title": "J Med Virol", "key": "17747_CR133", "unstructured": "Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, Yang T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J Med Virol. 2021;93(1):389–400.", "volume": "93", "year": "2021" }, { "DOI": "10.1038/s41419-020-02842-x", "author": "A Sauvat", "doi-asserted-by": "publisher", "first-page": "1", "issue": "8", "journal-title": "Cell Death Dis", "key": "17747_CR134", "unstructured": "Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):1–11.", "volume": "11", "year": "2020" }, { "DOI": "10.3389/fphar.2020.592737", "author": "CZ Chen", "doi-asserted-by": "publisher", "first-page": "592737", "journal-title": "Front Pharmacol", "key": "17747_CR135", "unstructured": "Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM. Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2. Front Pharmacol. 2021;11:592737.", "volume": "11", "year": "2021" }, { "DOI": "10.1038/s41401-020-00556-6", "author": "L Yang", "doi-asserted-by": "publisher", "first-page": "1347", "issue": "8", "journal-title": "Acta Pharmacol Sin", "key": "17747_CR136", "unstructured": "Yang L. Pei R-j, Li H, Ma X-n, Zhou Y, Zhu F-h, He P-l, Tang W, Zhang Y-c, Xiong J: Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol Sin. 2021;42(8):1347–53.", "volume": "42", "year": "2021" }, { "DOI": "10.1038/s41586-020-2286-9", "author": "DE Gordon", "doi-asserted-by": "publisher", "first-page": "459", "issue": "7816", "journal-title": "Nature", "key": "17747_CR137", "unstructured": "Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68.", "volume": "583", "year": "2020" }, { "DOI": "10.1111/jcpt.13390", "doi-asserted-by": "crossref", "key": "17747_CR138", "unstructured": "Le Corre P, Loas G. Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): an opportunity against SARS-CoV-2 infection? J Clin Pharm Ther. 2021;46(5):1213–9." }, { "DOI": "10.1016/j.ejphar.2021.174082", "author": "D Jade", "doi-asserted-by": "publisher", "first-page": "174082", "journal-title": "Eur J Pharmacol", "key": "17747_CR139", "unstructured": "Jade D, Ayyamperumal S, Tallapaneni V, Nanjan CMJ, Barge S, Mohan S, Nanjan MJ. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases. Eur J Pharmacol. 2021;901:174082.", "volume": "901", "year": "2021" }, { "DOI": "10.1038/s41598-021-91625-1", "author": "BL Le", "doi-asserted-by": "publisher", "first-page": "1", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR140", "unstructured": "Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep. 2021;11(1):1–14.", "volume": "11", "year": "2021" }, { "DOI": "10.1002/2211-5463.13153", "author": "K Imamura", "doi-asserted-by": "publisher", "first-page": "1452", "issue": "5", "journal-title": "FEBS Open Bio", "key": "17747_CR141", "unstructured": "Imamura K, Sakurai Y, Enami T, Shibukawa R, Nishi Y, Ohta A, Shu T, Kawaguchi J, Okada S, Hoenen T. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. FEBS Open Bio. 2021;11(5):1452–64.", "volume": "11", "year": "2021" }, { "DOI": "10.3389/fphar.2020.609592", "author": "H-L Xiong", "doi-asserted-by": "publisher", "first-page": "609592", "journal-title": "Front Pharmacol", "key": "17747_CR142", "unstructured": "Xiong H-L, Cao J-L, Shen C-G, Ma J, Qiao X-Y, Shi T-S, Ge S-X, Ye H-M, Zhang J, Yuan Q. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. Front Pharmacol. 2021;11:609592.", "volume": "11", "year": "2021" }, { "DOI": "10.3389/fphar.2021.755600", "author": "SM Fred", "doi-asserted-by": "publisher", "journal-title": "Front Pharmacol", "key": "17747_CR143", "unstructured": "Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, Vapalahti O, Castrén E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front Pharmacol. 2021;12: 755600.", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41380-021-01021-4", "author": "N Hoertel", "doi-asserted-by": "publisher", "first-page": "5199", "issue": "9", "journal-title": "Mol Psychiatry", "key": "17747_CR144", "unstructured": "Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot A-S, Neuraz A, Salamanca E, Paris N, Daniel C, Gramfort A. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol Psychiatry. 2021;26(9):5199–212.", "volume": "26", "year": "2021" }, { "DOI": "10.1016/j.xcrm.2020.100142", "author": "A Carpinteiro", "doi-asserted-by": "publisher", "first-page": "100142", "issue": "8", "journal-title": "Cell Reports Medicine", "key": "17747_CR145", "unstructured": "Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Reports Medicine. 2020;1(8):100142.", "volume": "1", "year": "2020" }, { "DOI": "10.3390/ph14020087", "author": "A Gelemanović", "doi-asserted-by": "publisher", "first-page": "87", "issue": "2", "journal-title": "Pharmaceuticals", "key": "17747_CR146", "unstructured": "Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 heterogeneous drug candidates for treatment of COVID-19 via a rational transcriptomics-based drug repurposing approach. Pharmaceuticals. 2021;14(2):87.", "volume": "14", "year": "2021" }, { "DOI": "10.1016/j.virol.2021.05.009", "author": "S Ge", "doi-asserted-by": "publisher", "first-page": "110", "journal-title": "Virology", "key": "17747_CR147", "unstructured": "Ge S, Lu J, Hou Y, Lv Y, Wang C, He H. Azelastine inhibits viropexis of SARS-CoV-2 spike pseudovirus by binding to SARS-CoV-2 entry receptor ACE2. Virology. 2021;560:110–5.", "volume": "560", "year": "2021" }, { "DOI": "10.1016/j.sjbs.2020.11.078", "author": "AB Gurung", "doi-asserted-by": "publisher", "first-page": "1426", "issue": "2", "journal-title": "Saudi J Biol Sci", "key": "17747_CR148", "unstructured": "Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp. Saudi J Biol Sci. 2021;28(2):1426–32.", "volume": "28", "year": "2021" }, { "author": "S Das", "first-page": "3347", "issue": "9", "journal-title": "J Biomol Struct Dyn", "key": "17747_CR149", "unstructured": "Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021;39(9):3347–57.", "volume": "39", "year": "2021" }, { "DOI": "10.1007/s11095-020-02930-9", "author": "R Hajjo", "doi-asserted-by": "publisher", "first-page": "1", "issue": "11", "journal-title": "Pharm Res", "key": "17747_CR150", "unstructured": "Hajjo R, Tropsha A. A systems biology workflow for drug and vaccine repurposing: identifying small-molecule BCG mimics to reduce or prevent COVID-19 mortality. Pharm Res. 2020;37(11):1–15.", "volume": "37", "year": "2020" }, { "DOI": "10.1038/cddis.2017.130", "doi-asserted-by": "crossref", "key": "17747_CR151", "unstructured": "Klutzny S, Lesche R, Keck M, Kaulfuss S, Schlicker A, Christian S, Sperl C, Neuhaus R, Mowat J, Steckel M, et al. Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death. Cell Death Dis. 2017;8(3):e2709." }, { "DOI": "10.1001/jama.2020.22760", "author": "EJ Lenze", "doi-asserted-by": "publisher", "first-page": "2292", "issue": "22", "journal-title": "JAMA", "key": "17747_CR152", "unstructured": "Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J, Nicol GE, Miller JP, Yang L, Yingling M, Avidan MS. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA. 2020;324(22):2292–300.", "volume": "324", "year": "2020" }, { "DOI": "10.1177/2472555220950236", "author": "J Nazeam", "doi-asserted-by": "publisher", "first-page": "1123", "issue": "10", "journal-title": "Slas Discovery", "key": "17747_CR153", "unstructured": "Nazeam J, Mohammed EZ, Raafat M, Houssein M, Elkafoury A, Hamdy D, Jamil L. Based on principles and insights of covid-19 epidemiology, genome sequencing, and pathogenesis: Retrospective analysis of sinigrin and prolixinrx (fluphenazine) provides off-label drug candidates. Slas Discovery. 2020;25(10):1123–40.", "volume": "25", "year": "2020" }, { "DOI": "10.1016/j.bbrc.2020.11.095", "author": "LR Reznikov", "doi-asserted-by": "publisher", "first-page": "173", "journal-title": "Biochem Biophys Res Commun", "key": "17747_CR154", "unstructured": "Reznikov LR, Norris MH, Vashisht R, Bluhm AP, Li D, Liao YJ, Brown A, Butte AJ, Ostrov DA. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun. 2021;538:173–9.", "volume": "538", "year": "2021" }, { "DOI": "10.1016/j.biopha.2020.110582", "author": "U Norinder", "doi-asserted-by": "publisher", "journal-title": "Biomed Pharmacother", "key": "17747_CR155", "unstructured": "Norinder U, Tuck A, Norgren K, Kos VM. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130: 110582.", "volume": "130", "year": "2020" }, { "DOI": "10.1080/22221751.2020.1829082", "author": "S Schloer", "doi-asserted-by": "publisher", "first-page": "2245", "issue": "1", "journal-title": "Emerging microbes & infections", "key": "17747_CR156", "unstructured": "Schloer S, Brunotte L, Goretzko J, Mecate-Zambrano A, Korthals N, Gerke V, Ludwig S, Rescher U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging microbes & infections. 2020;9(1):2245–55.", "volume": "9", "year": "2020" }, { "DOI": "10.1128/AAC.00819-20", "author": "S Jeon", "doi-asserted-by": "publisher", "first-page": "e00819", "issue": "7", "journal-title": "Antimicrob Agents Chemother", "key": "17747_CR157", "unstructured": "Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020;64(7):e00819–00820.", "volume": "64", "year": "2020" }, { "DOI": "10.1016/j.cbi.2021.109420", "author": "Y Hou", "doi-asserted-by": "publisher", "journal-title": "Chem Biol Interact", "key": "17747_CR158", "unstructured": "Hou Y, Ge S, Li X, Wang C, He H, He L. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis. Chem Biol Interact. 2021;338: 109420.", "volume": "338", "year": "2021" }, { "DOI": "10.1016/j.csbj.2021.02.009", "author": "AP Chavarría", "doi-asserted-by": "publisher", "first-page": "1379", "journal-title": "Comput Struct Biotechnol J", "key": "17747_CR159", "unstructured": "Chavarría AP, Vázquez RRV, Cherit JGD, Bello HH, Suastegui HC, Moreno-Castañeda L, Estrada GA, Hernández F, González-Marcos O, Saucedo-Orozco H. Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia by COVID-19. Comput Struct Biotechnol J. 2021;19:1379–90.", "volume": "19", "year": "2021" }, { "DOI": "10.1016/j.chest.2020.05.580", "author": "L Jehi", "doi-asserted-by": "publisher", "first-page": "1364", "issue": "4", "journal-title": "Chest", "key": "17747_CR160", "unstructured": "Jehi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, Young JB, Kattan MW. Individualizing Risk Prediction for Positive Coronavirus Disease 2019 Testing: Results From 11,672 Patients. Chest. 2020;158(4):1364–75.", "volume": "158", "year": "2020" }, { "DOI": "10.1016/j.ijantimicag.2020.106274", "author": "M Plaze", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "Int J Antimicrob Agents", "key": "17747_CR161", "unstructured": "Plaze M, Attali D, Prot M, Petit A-C, Blatzer M, Vinckier F, Levillayer L, Chiaravalli J, Perin-Dureau F, Cachia A. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int J Antimicrob Agents. 2021;57(3): 106274.", "volume": "57", "year": "2021" }, { "DOI": "10.1073/pnas.2012201118", "author": "EC Vatansever", "doi-asserted-by": "publisher", "issue": "10", "journal-title": "Proc Natl Acad Sci", "key": "17747_CR162", "unstructured": "Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho C-C, Kempaiah KR, Hsu JC, Mellott DM, Xu S. Tseng C-TK: Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci. 2021;118(10): e2012201118.", "volume": "118", "year": "2021" }, { "DOI": "10.1038/s41598-021-84044-9", "author": "SM O’Donovan", "doi-asserted-by": "publisher", "first-page": "1", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR163", "unstructured": "O’Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep. 2021;11(1):1–12.", "volume": "11", "year": "2021" }, { "DOI": "10.3389/fimmu.2020.586572", "author": "X Xiao", "doi-asserted-by": "publisher", "first-page": "586572", "journal-title": "Front Immunol", "key": "17747_CR164", "unstructured": "Xiao X, Wang C, Chang D, Wang Y, Dong X, Jiao T, Zhao Z, Ren L, Dela Cruz CS, Sharma L. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front Immunol. 2020;11:586572.", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.jphotobiol.2020.111997", "author": "A-M Udrea", "doi-asserted-by": "publisher", "first-page": "111997", "journal-title": "J Photochem Photobiol, B", "key": "17747_CR165", "unstructured": "Udrea A-M, Avram S, Nistorescu S, Pascu M-L, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol, B. 2020;211:111997.", "volume": "211", "year": "2020" }, { "DOI": "10.1021/acsptsci.0c00112", "author": "CZ Chen", "doi-asserted-by": "publisher", "first-page": "1165", "issue": "6", "journal-title": "ACS Pharmacol Transl Sci", "key": "17747_CR166", "unstructured": "Chen CZ, Xu M, Pradhan M, Gorshkov K, Petersen JD, Straus MR, Zhu W, Shinn P, Guo H, Shen M. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol Transl Sci. 2020;3(6):1165–75.", "volume": "3", "year": "2020" }, { "DOI": "10.1515/bchm3.1994.375.7.447", "author": "R Hurwitz", "doi-asserted-by": "publisher", "first-page": "447", "issue": "7", "journal-title": "Bio Chem Hoppe-Seyler", "key": "17747_CR167", "unstructured": "Hurwitz R, Ferlinz K, Sandhoff K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Bio Chem Hoppe-Seyler. 1994;375(7):447–50.", "volume": "375", "year": "1994" }, { "key": "17747_CR168", "unstructured": "MOE V. Chemical Computing Group Inc., Montreal, Canada. In.; 2010." }, { "DOI": "10.1016/j.saa.2022.120971", "author": "ZH Al-Qaisi", "doi-asserted-by": "publisher", "journal-title": "Spectrochim Acta Part A Mol Biomol Spectrosc", "key": "17747_CR169", "unstructured": "Al-Qaisi ZH, Al-Garawi ZS, Al-Karawi AJM, Hammood AJ, Abdallah AM, Clegg W, Mohamed GG. Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;272: 120971.", "volume": "272", "year": "2022" }, { "DOI": "10.1016/j.micpath.2021.104929", "author": "X Wang", "doi-asserted-by": "publisher", "journal-title": "Microb Pathog", "key": "17747_CR170", "unstructured": "Wang X, Lu J, Ge S, Hou Y, Hu T, Lv Y, Wang C, He H. Astemizole as a drug to inhibit the effect of SARS-COV-2 in vitro. Microb Pathog. 2021;156: 104929.", "volume": "156", "year": "2021" }, { "DOI": "10.4103/jmss.JMSS_25_20", "author": "AHD Janabi", "doi-asserted-by": "publisher", "first-page": "31", "issue": "1", "journal-title": "J Med Signals Sens", "key": "17747_CR171", "unstructured": "Janabi AHD. Molecular Docking Analysis of Anti-Severe Acute Respiratory Syndrome-Coronavirus 2 Ligands against Spike Glycoprotein and the 3-Chymotrypsin-Like Protease. J Med Signals Sens. 2021;11(1):31–6.", "volume": "11", "year": "2021" }, { "DOI": "10.3390/ph14030226", "author": "G Darquennes", "doi-asserted-by": "publisher", "first-page": "226", "issue": "3", "journal-title": "Pharmaceuticals (Basel)", "key": "17747_CR172", "unstructured": "Darquennes G, Le Corre P, Le Moine O, Loas G. Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and Reduced Risk of Death in COVID-19 Patients: A Retrospective Cohort Study. Pharmaceuticals (Basel). 2021;14(3):226.", "volume": "14", "year": "2021" }, { "DOI": "10.1016/j.jaccas.2020.04.053", "author": "N Castaldo", "doi-asserted-by": "publisher", "first-page": "1307", "issue": "9", "journal-title": "JACC Case Rep", "key": "17747_CR173", "unstructured": "Castaldo N, Aimo A, Castiglione V, Padalino C, Emdin M, Tascini C. Safety and Efficacy of Amiodarone in a Patient With COVID-19. JACC Case Rep. 2020;2(9):1307–10.", "volume": "2", "year": "2020" }, { "DOI": "10.1002/cpt.2317", "author": "N Hoertel", "doi-asserted-by": "publisher", "first-page": "1498", "issue": "6", "journal-title": "Clin Pharmacol Ther", "key": "17747_CR174", "unstructured": "Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze EJ, Reiersen AM, Abellán M, de la Muela P, Vernet R, et al. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin Pharmacol Ther. 2021;110(6):1498–511.", "volume": "110", "year": "2021" }, { "key": "17747_CR175", "unstructured": "i Y, Chen J, Pang L, Chen C, Ye J, Liu H, Chen H, Zhang S, Liu S, Liu B, et al. The Acid Sphingomyelinase Inhibitor Amitriptyline Ameliorates TNF-α-Induced Endothelial Dysfunction. Cardiovasc Drugs Ther. 2022:1–14." }, { "DOI": "10.3390/molecules25173830", "author": "M Sencanski", "doi-asserted-by": "publisher", "first-page": "3830", "issue": "17", "journal-title": "Molecules.", "key": "17747_CR176", "unstructured": "Sencanski M, Perovic V, Pajovic SB, Adzic M, Paessler S, Glisic S. Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method. Molecules. 2020;25(17):3830.", "volume": "25", "year": "2020" }, { "DOI": "10.3390/ph14070691", "author": "G Loas", "doi-asserted-by": "publisher", "first-page": "691", "issue": "7", "journal-title": "Pharmaceuticals (Basel)", "key": "17747_CR177", "unstructured": "Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel). 2021;14(7):691.", "volume": "14", "year": "2021" }, { "DOI": "10.1073/pnas.2012201118", "doi-asserted-by": "crossref", "key": "17747_CR178", "unstructured": "Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, Hsu JC, Mellott DM, Xu S, Tseng CK, et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci U S A. 2021;118(10):1–8." }, { "DOI": "10.1128/AAC.00819-20", "doi-asserted-by": "crossref", "key": "17747_CR179", "unstructured": "Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother. 2020;64(7):1–9." }, { "DOI": "10.1016/j.ejphar.2021.174082", "author": "D Jade", "doi-asserted-by": "publisher", "journal-title": "Eur J Pharmacol", "key": "17747_CR180", "unstructured": "Jade D, Ayyamperumal S, Tallapaneni V, Joghee Nanjan CM, Barge S, Mohan S, Nanjan MJ. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PL(PRO) and 3CL(PRO) proteases. Eur J Pharmacol. 2021;901: 174082.", "volume": "901", "year": "2021" }, { "DOI": "10.1038/s41586-021-03431-4", "author": "S Yuan", "doi-asserted-by": "publisher", "first-page": "418", "issue": "7859", "journal-title": "Nature", "key": "17747_CR181", "unstructured": "Yuan S, Yin X, Meng X, Chan JF, Ye ZW, Riva L, Pache L, Chan CC, Lai PM, Chan CC, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature. 2021;593(7859):418–23.", "volume": "593", "year": "2021" }, { "DOI": "10.1038/s41419-020-02842-x", "author": "A Sauvat", "doi-asserted-by": "publisher", "first-page": "656", "issue": "8", "journal-title": "Cell Death Dis", "key": "17747_CR182", "unstructured": "Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M, et al. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):656.", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.antiviral.2007.12.005", "author": "DL Barnard", "doi-asserted-by": "publisher", "first-page": "105", "issue": "2", "journal-title": "Antiviral Res", "key": "17747_CR183", "unstructured": "Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Jung KH, Li JK, Chan PK, Sidwell RW. Is the anti-psychotic, 10-(3-(dimethylamino)propyl)phenothiazine (promazine), a potential drug with which to treat SARS infections? Lack of efficacy of promazine on SARS-CoV replication in a mouse model. Antiviral Res. 2008;79(2):105–13.", "volume": "79", "year": "2008" }, { "DOI": "10.1128/JVI.01218-20", "author": "S Weston", "doi-asserted-by": "publisher", "first-page": "e01218", "issue": "21", "journal-title": "J Virol.", "key": "17747_CR184", "unstructured": "Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo. J Virol. 2020;94(21):e01218–20.", "volume": "94", "year": "2020" }, { "DOI": "10.3389/fphar.2020.592737", "author": "CZ Chen", "doi-asserted-by": "publisher", "journal-title": "Front Pharmacol", "key": "17747_CR185", "unstructured": "Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM, et al. Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2. Front Pharmacol. 2020;11: 592737.", "volume": "11", "year": "2020" }, { "DOI": "10.1016/j.xcrm.2020.100142", "author": "A Carpinteiro", "doi-asserted-by": "publisher", "issue": "8", "journal-title": "Cell Rep Med", "key": "17747_CR186", "unstructured": "Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S, et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep Med. 2020;1(8): 100142.", "volume": "1", "year": "2020" }, { "DOI": "10.1038/s41598-022-25399-5", "author": "M Morin-Dewaele", "doi-asserted-by": "publisher", "first-page": "21053", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR187", "unstructured": "Morin-Dewaele M, Bartier S, Berry F, Brillet R, López-Molina DS, Nguyễn CT, Maille P, Sereno K, Nevers Q, Softic L, et al. Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Sci Rep. 2022;12(1):21053.", "volume": "12", "year": "2022" }, { "DOI": "10.1038/s41598-021-91625-1", "author": "BL Le", "doi-asserted-by": "publisher", "first-page": "12310", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR188", "unstructured": "Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C, et al. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep. 2021;11(1):12310.", "volume": "11", "year": "2021" }, { "DOI": "10.1016/j.ejphar.2021.173897", "author": "S Ge", "doi-asserted-by": "publisher", "first-page": "173897", "journal-title": "Eur J Pharmacol", "key": "17747_CR189", "unstructured": "Ge S, Wang X, Hou Y, Lv Y, Wang C, He H. Repositioning of histamine H(1) receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2. Eur J Pharmacol. 2021;896:173897.", "volume": "896", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2020.104786", "author": "KT Choy", "doi-asserted-by": "publisher", "first-page": "104786", "journal-title": "Antiviral Res", "key": "17747_CR190", "unstructured": "Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.", "volume": "178", "year": "2020" }, { "DOI": "10.1186/s10020-021-00356-6", "author": "RRR Duarte", "doi-asserted-by": "publisher", "first-page": "105", "issue": "1", "journal-title": "Mol Med", "key": "17747_CR191", "unstructured": "Duarte RRR, Copertino DC Jr, Iñiguez LP, Marston JL, Bram Y, Han Y, Schwartz RE, Chen S, Nixon DF, Powell TR. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol Med. 2021;27(1):105.", "volume": "27", "year": "2021" }, { "DOI": "10.2174/1570163819666220117161308", "doi-asserted-by": "crossref", "key": "17747_CR192", "unstructured": "Sahoo BM, Bhattamisra SK, Das S, Tiwari A, Tiwari V, Kumar M, Singh S. Computational Approach to Combat COVID-19 Infection: Emerging Tools for Accelerating Drug Research. Curr Drug Discov Technol. 2022;19(3):40–53." }, { "DOI": "10.1016/j.biopha.2020.110582", "author": "U Norinder", "doi-asserted-by": "publisher", "journal-title": "Biomed Pharmacother", "key": "17747_CR193", "unstructured": "Norinder U, Tuck A, Norgren K, Munic Kos V. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130: 110582.", "volume": "130", "year": "2020" }, { "DOI": "10.3949/ccjm.87a.ccc037", "doi-asserted-by": "crossref", "key": "17747_CR194", "unstructured": "Cheng F, Rao S, Mehra R. COVID-19 treatment: Combining anti-inflammatory and antiviral therapeutics using a network-based approach. Cleve Clin J Med. 2020:1–6." }, { "DOI": "10.1038/s41421-020-0153-3", "author": "Y Zhou", "doi-asserted-by": "publisher", "first-page": "14", "journal-title": "Cell Discov", "key": "17747_CR195", "unstructured": "Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14.", "volume": "6", "year": "2020" }, { "DOI": "10.3390/ph14020087", "author": "A Gelemanović", "doi-asserted-by": "publisher", "first-page": "87", "issue": "2", "journal-title": "Pharmaceuticals (Basel)", "key": "17747_CR196", "unstructured": "Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 Heterogeneous Drug Candidates for Treatment of COVID-19 via a Rational Transcriptomics-Based Drug Repurposing Approach. Pharmaceuticals (Basel). 2021;14(2):87.", "volume": "14", "year": "2021" }, { "DOI": "10.3390/molecules28072989", "author": "A Naz", "doi-asserted-by": "publisher", "first-page": "2989", "issue": "7", "journal-title": "Molecules", "key": "17747_CR197", "unstructured": "Naz A, Asif S, Alwutayd KM, Sarfaraz S, Abbasi SW, Abbasi A, Alenazi AM, Hasan ME. Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach. Molecules. 2023;28(7):2989.", "volume": "28", "year": "2023" }, { "DOI": "10.3390/pharmaceutics13040545", "author": "DY Liu", "doi-asserted-by": "publisher", "first-page": "545", "issue": "4", "journal-title": "Pharmaceutics.", "key": "17747_CR198", "unstructured": "Liu DY, Liu JC, Liang S, Meng XH, Greenbaum J, Xiao HM, Tan LJ, Deng HW. Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics. Pharmaceutics. 2021;13(4):545.", "volume": "13", "year": "2021" }, { "DOI": "10.1038/s41598-020-70143-6", "author": "F Touret", "doi-asserted-by": "publisher", "first-page": "13093", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR199", "unstructured": "Touret F, Gilles M, Barral K, Nougairède A, van Helden J, Decroly E, de Lamballerie X, Coutard B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep. 2020;10(1):13093.", "volume": "10", "year": "2020" }, { "DOI": "10.1038/s41598-021-84044-9", "author": "SM O'Donovan", "doi-asserted-by": "publisher", "first-page": "4495", "issue": "1", "journal-title": "Sci Rep", "key": "17747_CR200", "unstructured": "O’Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, et al. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep. 2021;11(1):4495.", "volume": "11", "year": "2021" }, { "DOI": "10.1016/j.jphotobiol.2020.111997", "author": "AM Udrea", "doi-asserted-by": "publisher", "first-page": "111997", "journal-title": "J Photochem Photobiol B", "key": "17747_CR201", "unstructured": "Udrea AM, Avram S, Nistorescu S, Pascu ML, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol B. 2020;211:111997.", "volume": "211", "year": "2020" }, { "key": "17747_CR202", "unstructured": "Daisy AH, Daniel JBC, Rasmus M, Yuling H, Liuliu Y, Megan LW, Alexander L, Kasopefoluwa YO, Christian S, Benhur L, et al. Modulating the transcriptional landscape of SARS-CoV-2 as an effective method for developing antiviral compounds. bioRxiv. 2020:1–27." } ], "reference-count": 202, "references-count": 202, "relation": {}, "resource": { "primary": { "URL": "https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-024-17747-z" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [ "Public Health, Environmental and Occupational Health" ], "subtitle": [], "title": "Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity", "type": "journal-article", "update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy", "volume": "24" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit