ZnO@Fe3O4 for COVID-19
ZnO@Fe3O4 has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
High-efficiency photocatalytic degradation of antibiotics and molecular docking study to treat the omicron variant of COVID-19 infection using biosynthesized ZnO@Fe3O4 nanocomposites, Physica Scripta, doi:10.1088/1402-4896/acff2d
,
Abstract In this study, ZnO@Fe3O4 nanocomposite (NC) was synthesized using a green synthesis method with Mentha pulegium leaf extract. Characterization techniques such as UV–vis, FTIR, SEM, TGA, and XRD were employed to confirm the formation of ZnO@Fe3O4 NC and thermogravimetric analysis to evaluate the breakdown of NC in the presence of heat. XRD analysis showed a crystallite size of about 25.59 nm and SEM images of ZnO@Fe3O4 NC revealed spherical-shaped agglomerated particles. The optical bandgap energy of the ZnO@Fe3O4 NC was estimated to be 2.51 eV for direct bandgap and 1.57 eV for allowable indirect bandgap. Photocatalytic activity of the ZnO@Fe3O4 NC was evaluated for the degradation of Amoxicillin, Cephalexin, and Metronidazole antibiotics under sunlight irradiation, showing degradation efficiencies of 71%, 69%, and 99%, respectively, suggesting the potential of ZnO@Fe3O4 NC for removal of antibiotics from waterways. First-principles theory was employed to establish the adsorption energy (Ead) of the antibiotic species, including Amoxicillin, Cephalexin, and Metronidazole, on the surface of ZnO@Fe3O4 nanocomposite, which was found to be −8.064, −8.791, and −21.385 eV, respectively, indicating strong adsorption. Furthermore, molecular docking studies were conducted to upgrade Fe3O4 nanoparticles to ZnO@Fe3O4 NC to enhance composite efficiency. Leveraging the FDA-approved use of Fe3O4 nanoparticles and their known antiviral activity, our docking experiment demonstrated promising results in the interaction between ZnO@Fe3O4 nanocomposite and the spike protein receptor-binding domain of SARS-CoV-2 S Omicron. These findings suggest that ZnO@Fe3O4 nanocomposite could potentially inhibit virus attachment to host cell receptors more stably, providing a promising avenue for further exploration in developing effective medications against SARS-CoV-2.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.