Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

ZINC03977803 for COVID-19

ZINC03977803 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Askari et al., Digging for the Discovery of SARS-CoV-2 nsp12 Inhibitors: A Pharmacophore-Based and Molecular Dynamics Simulation Study, Research Square, doi:10.21203/rs.3.rs-907714/v1
Abstract Background: The severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a grave global threat causing Coronavirus Disease 2019 (COVID-19). The therapeutics are urgently needed to cure patients severely infected with COVID-19. The aim of the study was to investigate for potential candidates of nsp12 inhibitors by searching for druggable cavity pockets within the viral protein and drug discovery.Methods: The crystallographic structure of SARS-CoV-2 nsp12 was searched for strong druggable cavity pockets and pharmacophore features by the CavityPlus server. The features were selected for high-throughput screening (HTS) of a chemical library of ZINC natural products and hit identification database by ZINCPharmer. Autodock Vina was furthered utilized for estimation of hits' affinities to nsp12. A lead compound with the highest affinity to nsp12 was simulated dynamically by GROMACS for 10 nanoseconds (ns) to measure the hit stability in complex with nsp12 and conformational changes.Results: 1 of 6 cavities with the highest score was selected for extraction of pharmacophore features and hit-identification. 9 pharmacophores were screened, and a total of unique 1274 hits were identified. One compound, ZINV03977803, with an -11.0 Kcal.mol-1 affinity was selected as the lead compound for molecular dynamic simulation (MDS). The results showed stable interaction between ZINV03977803 and nsp12 during 10 ns of simulation. The room-mean-square of deviation (RMSD) measure showed dramatically high conformational changes in the complex of ZINV03977803 and nsp12 compare two the viral proteins alone.Conclusions: The lead compound ZINV03977803 showed stable interaction with higher potential and hydrogen bonding with the catalytic subunit of SARS-CoV-2, nsp12. It could also inhibit the SARS-CoV-2 life cycle by direct interaction with nsp12 and inhibits RdRp complex formation.
Askari et al., Digging for the discovery of SARS-CoV-2 nsp12 inhibitors: a pharmacophore-based and molecular dynamics simulation study, Future Virology, doi:10.2217/fvl-2022-0054
Aim: COVID-19 is a global health threat. Therapeutics are urgently needed to cure patients severely infected with COVID-19. Objective: to investigate potential candidates of nsp12 inhibitors by searching for druggable cavity pockets within the viral protein and drug discovery. Methods: A virtual screening of ZINC natural products on SARS-CoV-2 nsp12's druggable cavity was performed. A lead compound with the highest affinity to nsp12 was simulated dynamically for 10 ns. Results: ZINC03977803 was nominated as the lead compound. The results showed stable interaction between ZINC03977803 and nsp12 during 10 ns. Discussion: ZINC03977803 showed stable interaction with the catalytic subunit of SARS-CoV-2, nsp12. It could inhibit the SARS-CoV-2 life cycle by direct interaction with nsp12 and inhibit RdRp complex formation.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit