VDAC1 antibody for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
VDAC1 antibody may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed VDAC1 antibody in detail.
, Shedding of mitochondrial Voltage-Dependent Anion Channel-1 (VDAC1) Reflects COVID-19 Severity and Reveals Macrophage Dysfunction, bioRxiv, doi:10.1101/2025.07.07.663218
Abstract COVID-19 severity correlates with lymphopenia and increased pro-inflammatory cytokines. However, the dysfunction of tissue macrophages in COVID-19 patients during the inflammatory cytokine storm has not been fully elucidated. Hospitalized COVID-19 patients were divided into three groups based on their symptomatic severity: exhibiting mild, moderate, or severe symptoms. Patients exhibited successively increased serum levels of mitochondrial voltage-dependent anion channel 1 (VDAC1) at days 0, 3, 7, 10, and 14, returning to those of non-infected subjects at day 28. Serum level of VDAC1 was positively correlated with COVID-19 severity and with increased white blood cell (WBC), neutrophil, lymphocyte, procalcitonin (PCT), and gamma-glutamyltransferase (GT) levels. Peripheral blood mononuclear cells (PBMCs) from hospitalized COVID-19 patients showed increased VDAC1 content concomitant with a reduced ATP content. Culture of monocytes, isolated from healthy individuals, and differentiated into polarized M1 macrophages, together with a cytokine mixture (IL-1β, IFN-γ, and TNF-α), to mimic the inflammatory cytokine storm, for 24 h markedly increased VDAC1 and Monocyte chemoattractant protein-1 (MCP-1) release in culture medium. The presence of the cytokine mixture reduced the ATP content, cell viability, and the phagocytic capability of macrophages. Co-staining of VDAC1 and the plasma membrane marker Na+/K+-ATPase showed that cytokine-treatment mistargeted VDAC1 to the cell surface of macrophages. All these effects were prevented by VDAC1 inhibition using VBIT-4, VDAC1-specific antibody (VDAC1-ab), or metformin. Our findings indicate that increased VDAC1 expression and cell surface mistargeting in immune cells might be associated with cell dysfunction, potentially contributing to the severity of COVID-19 infection. The data also indicate serum VDAC1 as a biomarker of COVID-19 severity and the use of VDAC1 inhibitors as potential drug candidates restoring macrophages and PBMCs function in individuals severely affected by COVID-19.