Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Spirulina for COVID-19

Spirulina has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Joseph et al., The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction, Current Pharmaceutical Biotechnology, doi:10.2174/1389201022666210810111716
Background: Coronaviruses (CoVs) infect a wide range of animals and birds. Their tropism is primarily determined by the ability of the spike protein to bind to a host cell surface receptor. The ongoing outbreak of SARS-CoV-2 inculcates the need for the development of effective intervention strategies. Objectives: In this study, we aim to produce pseudotyped coronaviruses of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 and show its applications, including virus entry, neutralization, and screening of entry inhibitors from natural products. Methods: Here, we generated VSV-based pseudotyped coronaviruses (CoV-PVs) for SARS-CoV-1, MERS-CoV, and SARS-CoV-2. Recombinant spike proteins of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 were transiently expressed in HEK293T cells followed by infection with recombinant VSV. High titer pseudoviruses were harvested and subjected to distinct validation assays, which confirms the proper spike pseudotyping. Further, specific receptor-mediated entry was confirmed by antibody neutralization and soluble form of receptor inhibition assay on Vero E6 cells. Next, these CoV-PVs were used for screening of antiviral activity of natural products such as green tea and Spirulina extract. Results: Here, we generated VSV-based pseudotyped coronaviruses (CoV-PVs) for SARS-CoV-1, MERS-CoV, and SARS-CoV-2. Recombinant spike proteins of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 were transiently expressed in HEK293T cells followed by infection with recombinant VSV. High titer pseudoviruses were harvested and subjected to distinct validation assays, which confirms the proper spike pseudotyping. Further, specific receptor-mediated entry was confirmed by antibody neutralization and soluble form of receptor inhibition assay on Vero E6 cells. Next, these CoV-PVs were used for screening of antiviral activity of natural products such as green tea and Spirulina extract. Conclusion: In summary, we demonstrated that pseudotyped viruses are an ideal tool for studying viral entry, quantification of neutralizing antibodies, and screening of entry inhibitors in a BSL-2 facility. Moreover, green tea might be a promising natural remedy against emerging coronaviruses.
Aghasadeghi et al., Effect of high-dose Spirulina supplementation on hospitalized adults with COVID-19: a randomized controlled trial, Frontiers in Immunology, doi:10.3389/fimmu.2024.1332425
ObjectiveSpirulina (arthrospira platensis) is a cyanobacterium proven to have anti-inflammatory, antiviral, and antioxidant effects. However, the effect of high-dose Spirulina supplementation on hospitalized adults with COVID-19 is currently unclear. This study aimed to evaluate the efficacy and safety of high-dose Spirulina platensis for SARS-CoV-2 infection.Study DesignWe conducted a randomized, controlled, open-label trial involving 189 patients with COVID-19 who were randomly assigned in a 1:1 ratio to an experimental group that received 15.2g of Spirulina supplement plus standard treatment (44 non-intensive care unit (non-ICU) and 47 ICU), or to a control group that received standard treatment alone (46 non-ICU and 52 ICU). The study was conducted over six days. Immune mediators were monitored on days 1, 3, 5, and 7. The primary outcome of this study was mortality or hospital discharge within seven days, while the overall discharge or mortality was considered the secondary outcome.ResultsWithin seven days, there were no deaths in the Spirulina group, while 15 deaths (15.3%) occurred in the control group. Moreover, within seven days, there was a greater number of patients discharged in the Spirulina group (97.7%) in non-ICU compared to the control group (39.1%) (HR, 6.52; 95% CI, 3.50 to 12.17). Overall mortality was higher in the control group (8.7% non-ICU, 28.8% ICU) compared to the Spirulina group (non-ICU HR, 0.13; 95% CI, 0.02 to 0.97; ICU, HR, 0.16; 95% CI, 0.05 to 0.48). In non-ICU, patients who received Spirulina showed a significant reduction in the levels of IL-6, TNF-α, IL-10, and IP-10 as intervention time increased. Furthermore, in ICU, patients who received Spirulina showed a significant decrease in the levels of MIP-1α and IL-6. IFN-γ levels were significantly higher in the intervention group in both ICU and non-ICU subgroups as intervention time increased. No side effects related to Spirulina supplements were observed during the trial.ConclusionHigh-dose Spirulina supplements coupled with the standard treatment of COVID-19 may improve recovery and remarkably reduce mortality in hospitalized patients with COVID-19.Clinical Trial Registrationhttps://irct.ir/trial/54375, Iranian Registry of Clinical Trials number (IRCT20210216050373N1)
Trischitta et al., Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review, International Journal of Molecular Sciences, doi:10.3390/ijms25105188
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus’s entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, Interdisciplinary Perspectives on Infectious Diseases, doi:10.1155/2023/7598307
COVID-19 pandemic caused by the novel SARS-CoV-2 has impacted human livelihood globally. Strenuous efforts have been employed for its control and prevention; however, with recent reports on mutated strains with much higher infectivity, transmissibility, and ability to evade immunity developed from previous SARS-CoV-2 infections, prevention alternatives must be prepared beforehand in case. We have perused over 128 recent works (found on Google Scholar, PubMed, and ScienceDirect as of February 2023) on medicinal plants and their compounds for anti-SARS-CoV-2 activity and eventually reviewed 102 of them. The clinical application and the curative effect were reported high in China and in India. Accordingly, this review highlights the unprecedented opportunities offered by medicinal plants and their compounds, candidates as the therapeutic agent, against COVID-19 by acting as viral protein inhibitors and immunomodulator in (32 clinical trials and hundreds of in silico experiments) conjecture with modern science. Moreover, the associated foreseeable challenges for their viral outbreak management were discussed in comparison to synthetic drugs.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit