Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Sinefungin for COVID-19

Sinefungin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Benjamin et al., Cannabinoid-Inspired Inhibitors of the SARS-CoV-2 Coronavirus 2′-O-Methyltransferase (2′-O-MTase) Non-Structural Protein (Nsp10–16), Molecules, doi:10.3390/molecules29215081
The design and synthesis of antiviral compounds were guided by computationally predicted data against highly conserved non-structural proteins (Nsps) of the SARS-CoV-2 coronavirus. Chromenephenylmethanone-1 (CPM-1), a novel biphenylpyran (BPP), was selected from a unique natural product library based on in silico docking scores to coronavirus Nsps with high specificity to the methyltransferase protein (2′-O-MTase, Nsp10–16), which is responsible for viral mRNA maturation and host innate immune response evasion. To target the 2′-O-MTase, CPM-1, along with intermediate BPP regioisomers, tetrahydrophenylmethanones (TPMs), were synthesized and structurally validated via nuclear magnetic resonance (NMR) data and DP4+ structure probability analyses. To investigate the activity of these BPPs, the following in vitro assays were conducted: SARS-CoV-2 inhibition, biochemical target validation, mutagenicity, and cytotoxicity. CPM-1 possessed notable activity against SARS-CoV-2 with 98.9% inhibition at 10 µM and an EC50 of 7.65 µM, as well as inhibition of SARS-CoV-2’s 2′-O-MTase (expressed and purified) with an IC50 of 1.5 ± 0.2 µM. In addition, CPM-1 revealed no cytotoxicity (CC50 of >100 µM) or mutagenicity (no frameshift or base-pair mutations). This study demonstrates the potential of computational modeling for the discovery of natural product prototypes followed by the design and synthesis of drug leads to inhibit the SARS-CoV-2 2′-O-MTase.
Hijikata et al., Knowledge‐based structural models of SARS‐CoV‐2 proteins and their complexes with potential drugs, FEBS Letters, doi:10.1002/1873-3468.13806
The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID‐19) caused by the novel coronavirus SARS‐CoV‐2 a pandemic. There is, however, no confirmed anti‐COVID‐19 therapeutic currently. In order to assist structure‐based discovery efforts for repurposing drugs against this disease, we constructed knowledge‐based models of SARS‐CoV‐2 proteins and compared the ligand molecules in the template structures with approved/experimental drugs and components of natural medicines. Our theoretical models suggest several drugs, such as carfilzomib, sinefungin, tecadenoson, and trabodenoson, that could be further investigated for their potential for treating COVID‐19.
Tam et al., Targeting SARS-CoV-2 Non-Structural Proteins, International Journal of Molecular Sciences, doi:10.3390/ijms241613002
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped respiratory β coronavirus that causes coronavirus disease (COVID-19), leading to a deadly pandemic that has claimed millions of lives worldwide. Like other coronaviruses, the SARS-CoV-2 genome also codes for non-structural proteins (NSPs). These NSPs are found within open reading frame 1a (ORF1a) and open reading frame 1ab (ORF1ab) of the SARS-CoV-2 genome and encode NSP1 to NSP11 and NSP12 to NSP16, respectively. This study aimed to collect the available literature regarding NSP inhibitors. In addition, we searched the natural product database looking for similar structures. The results showed that similar structures could be tested as potential inhibitors of the NSPs.
Schake et al., An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and predicts new compound scaffolds, Scientific Reports, doi:10.1038/s41598-023-35671-x
AbstractThe recent outbreak of the COVID-19 pandemic caused by severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) has shown the necessity for fast and broad drug discovery methods to enable us to react quickly to novel and highly infectious diseases. A well-known SARS-CoV-2 target is the viral main 3-chymotrypsin-like cysteine protease (Mpro), known to control coronavirus replication, which is essential for the viral life cycle. Here, we applied an interaction-based drug repositioning algorithm on all protein-compound complexes available in the protein database (PDB) to identify Mpro inhibitors and potential novel compound scaffolds against SARS-CoV-2. The screen revealed a heterogeneous set of 692 potential Mpro inhibitors containing known ones such as Dasatinib, Amodiaquine, and Flavin mononucleotide, as well as so far untested chemical scaffolds. In a follow-up evaluation, we used publicly available data published almost two years after the screen to validate our results. In total, we are able to validate 17% of the top 100 predictions with publicly available data and can furthermore show that predicted compounds do cover scaffolds that are yet not associated with Mpro. Finally, we detected a potentially important binding pattern consisting of 3 hydrogen bonds with hydrogen donors of an oxyanion hole within the active side of Mpro. Overall, these results give hope that we will be better prepared for future pandemics and that drug development will become more efficient in the upcoming years.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit