Rimantadine for COVID-19

COVID-19 involves the interplay of over 200 viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed over 10,000 potential treatments.
c19early.org analyzes
170+ treatments.
Anti-SARS-CoV-2 Activity of Adamantanes In Vitro and in Animal Models of Infection, COVID, doi:10.3390/covid2110111
,
Coronavirus disease 2019 (COVID-19) has had devastating effects worldwide, with particularly high morbidity and mortality in outbreaks on residential care facilities. Amantadine, originally licensed as an antiviral agent for therapy and prophylaxis against influenza A virus, has beneficial effects on patients with Parkinson’s disease and is used for treatment of Parkinson’s disease, multiple sclerosis, acquired brain injury, and various other neurological disorders. Recent observational data suggest an inverse relationship between the use of amantadine and COVID-19. Adamantanes, including amantadine and rimantadine, are reported to have in vitro activity against severe acute respiratory syndrome coronavirus (SARS-CoV) and, more recently, SARS-CoV-2. We hypothesized that adamantanes have antiviral activity against SARS-CoV-2, including variant strains. To assess the activity of adamantanes against SARS-CoV-2, we used in vitro and in vivo models of infection. We established that amantadine, rimantadine, and tromantadine inhibit the growth of SARS-CoV-2 in vitro in cultured human epithelial cells. While neither rimantadine nor amantadine reduces lung viral titers in mice infected with mouse-adapted SARS-CoV-2, rimantadine significantly reduces viral titers in the lungs in golden Syrian hamsters infected with SARS-CoV-2. In summary, rimantadine has antiviral activity against SARS-CoV-2 in human alveolar epithelial cells and in the hamster model of SARS-CoV-2 lung infection. The evaluation of amantadine or rimantadine in human randomized controlled trials can definitively address applications for the treatment or prevention of COVID-19.
Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future, Frontiers in Microbiology, doi:10.3389/fmicb.2023.1232453
,
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Metabolic Reprogramming in Respiratory Viral Infections: A Focus on SARS-CoV-2, Influenza, and Respiratory Syncytial Virus, Biomolecules, doi:10.3390/biom15071027
,
Respiratory infections caused by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus pose significant global health challenges, leading to high morbidity and mortality, particularly in vulnerable populations. Despite their distinct virological characteristics, these viruses exploit host cellular metabolism to support replication, modulate immune responses, and promote disease progression. Emerging evidence shows that they induce metabolic reprogramming, shifting cellular energy production toward glycolysis to meet the bioenergetic demands of viral replication. Additionally, alterations in lipid metabolism, including enhanced fatty acid synthesis and disrupted cholesterol homeostasis, facilitate viral entry, replication, and immune evasion. The dysregulation of mitochondrial function and oxidative stress pathways also contributes to disease severity and long-term complications, such as persistent inflammation and immune exhaustion. Understanding these metabolic shifts is crucial for identifying new therapeutic targets and novel biomarkers for early disease detection, prognosis, and patient stratification. This review provides an overview of the metabolic alterations induced by severe acute respiratory syndrome coronavirus 2, influenza virus, and respiratory syncytial virus, highlighting shared and virus-specific mechanisms and potential therapeutic interventions.
Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies, Molecules, doi:10.3390/molecules29235564
,
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies, MDPI AG, doi:10.20944/preprints202409.2409.v1
,
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as Fusion inhibitors, Protease inhibitors, Transcription inhibitors, Neuraminidase inhibitors, Nucleoside reverse transcriptase, and non-antiviral interventions like Importin α/β1-mediated nuclear import inhibitors, Neutralizing antibodies and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Patch-clamp studies and cell viability assays suggest a distinct site for viroporin inhibitors on the E protein of SARS-CoV-2, Virology Journal, doi:10.1186/s12985-023-02095-y
,
Abstract Background SARS-CoV-2 has caused a worldwide pandemic since December 2019 and the search for pharmaceutical targets against COVID-19 remains an important challenge. Here, we studied the envelope protein E of SARS-CoV and SARS-CoV-2, a highly conserved 75–76 amino acid viroporin that is crucial for virus assembly and release. E protein channels were recombinantly expressed in HEK293 cells, a membrane-directing signal peptide ensured transfer to the plasma membrane. Methods Viroporin channel activity of both E proteins was investigated using patch-clamp electrophysiology in combination with a cell viability assay. We verified inhibition by classical viroporin inhibitors amantadine, rimantadine and 5-(N,N-hexamethylene)-amiloride, and tested four ivermectin derivatives. Results Classical inhibitors showed potent activity in patch-clamp recordings and viability assays. In contrast, ivermectin and milbemycin inhibited the E channel in patch-clamp recordings but displayed only moderate activity on the E protein in the cell viability assay, which is also sensitive to general cytotoxic activity of the tested compounds. Nemadectin and ivermectin aglycon were inactive. All ivermectin derivatives were cytotoxic at concentrations > 5 µM, i.e. below the level required for E protein inhibition. Conclusions This study demonstrates direct inhibition of the SARS-CoV-2 E protein by classical viroporin inhibitors. Ivermectin and milbemycin inhibit the E protein channel but their cytotoxicity argues against clinical application.
Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, Scientific Reports, doi:10.1038/s41598-023-31764-9
,
AbstractSARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.
Please send us corrections, updates, or comments.
c19early involves the extraction of 200,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. IMA and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.