Analgesics
Antiandrogens
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lactoferrin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Peg.. Lambda
Quercetin
Remdesivir
Vitamins

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta
Cannabidiol Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Ensovibep Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Peg.. Lambda Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

Ribavirin for COVID-19

Ribavirin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Wei et al., Total network controllability analysis discovers explainable drugs for Covid-19 treatment, Biology Direct, doi:10.1186/s13062-023-00410-9
Abstract Background The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural controllability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets. Results We developed an efficient algorithm to identify all control hubs, applying it to a largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach’s effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients. Conclusions Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery. Our new approach is general and applicable to repurposing drugs for other diseases.
Mushebenge et al., Assessing the Potential Contribution of in Silico Studies in Discovering Drug Candidates that Interact with Various SARS-CoV-2 Receptors, MDPI AG, doi:10.20944/preprints202308.0434.v1
COVID-19 pandemic has spurred intense research efforts to identify effective treatments for SARS-CoV-2. In silico studies have emerged as a powerful tool in the drug discovery process, particularly in the search for drug candidates that interact with various SARS-CoV-2 receptors. These studies involve the use of computer simulations and computational algorithms to predict the potential interaction of drug candidates with target receptors. The primary receptors targeted by drug candidates include the RNA polymerase, main protease, spike protein, ACE2 receptor, TMPRSS2, and AP2-associated protein kinase 1. In silico studies have identified several promising drug candidates, including Remdesivir, Favipiravir, Ribavirin, Ivermectin, Lopinavir/Ritonavir, and Camostat mesylate, among others. The use of in silico studies offers several advantages, including the ability to screen a large number of drug candidates in a relatively short amount of time, thereby reducing the time and cost involved in traditional drug discovery methods. Additionally, in silico studies allow for the prediction of the binding affinity of drug candidates to target receptors, providing insight into their potential efficacy. However, it is crucial to consider both the advantages and limitations of these studies and to complement them with experimental validation to ensure the efficacy and safety of identified drug candidates.
Moura et al., Converging Paths: A Comprehensive Review of the Synergistic Approach between Complementary Medicines and Western Medicine in Addressing COVID-19 in 2020, BioMed, doi:10.3390/biomed3020025
The rapid spread of the new coronavirus disease (COVID-19) caused by SARS-CoV-2 has become a global pandemic. Although specific vaccines are available and natural drugs are being researched, supportive care and specific treatments to alleviate symptoms and improve patient quality of life remain critical. Chinese medicine (CM) has been employed in China due to the similarities between the epidemiology, genomics, and pathogenesis of SARS-CoV-2 and SARS-CoV. Moreover, the integration of other traditional oriental medical systems into the broader framework of integrative medicine can offer a powerful approach to managing the disease. Additionally, it has been reported that integrated medicine has better effects and does not increase adverse drug reactions in the context of COVID-19. This article examines preventive measures, potential infection mechanisms, and immune responses in Western medicine (WM), as well as the pathophysiology based on principles of complementary medicine (CM). The convergence between WM and CM approaches, such as the importance of maintaining a strong immune system and promoting preventive care measures, is also addressed. Current treatment options, traditional therapies, and classical prescriptions based on empirical knowledge are also explored, with individual patient circumstances taken into account. An analysis of the potential benefits and challenges associated with the integration of complementary and Western medicine (WM) in the treatment of COVID-19 can provide valuable guidance, enrichment, and empowerment for future research endeavors.
Fan et al., Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities, Acta Pharmaceutica, doi:10.2478/acph-2023-0014
Abstract SARS-CoV-2, a newly discovered coronavirus, has been linked to the COVID-19 pandemic and is currently an important public health issue. Despite all the work done to date around the world, there is still no viable treatment for COVID-19. This study examined the most recent evidence on the efficacy and safety of several therapeutic options available including natural substances, synthetic drugs and vaccines in the treatment of COVID-19. Various natural compounds such as sarsapogenin, lycorine, biscoclaurine, vitamin B12, glycyrrhizic acid, riboflavin, resveratrol and kaempferol, various vaccines and drugs such as AZD1222, mRNA-1273, BNT162b2, Sputnik V, and remdesivir, lopinavir, favipiravir, darunavir, oseltamivir, and umifenovir, resp., have been discussed comprehensively. We attempted to provide exhaustive information regarding the various prospective therapeutic approaches available in order to assist researchers and physicians in treating COVID-19 patients.
Li et al., Bioinformatics and system biology approach to identify the influences among COVID-19, ARDS and sepsis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1152186
Background Severe coronavirus disease 2019 (COVID -19) has led to severe pneumonia or acute respiratory distress syndrome (ARDS) worldwide. we have noted that many critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. The molecular mechanisms that underlie COVID-19, ARDS and sepsis are not well understood. The objectives of this study were to analyze potential molecular mechanisms and identify potential drugs for the treatment of COVID-19, ARDS and sepsis using bioinformatics and a systems biology approach. Methods Three RNA-seq datasets (GSE171110, GSE76293 and GSE137342) from Gene Expression Omnibus (GEO) were employed to detect mutual differentially expressed genes (DEGs) for the patients with the COVID-19, ARDS and sepsis for functional enrichment, pathway analysis, and candidate drugs analysis. Results We obtained 110 common DEGs among COVID-19, ARDS and sepsis. ARG1, FCGR1A, MPO, and TLR5 are the most influential hub genes. The infection and immune-related pathways and functions are the main pathways and molecular functions of these three diseases. FOXC1, YY1, GATA2, FOXL, STAT1 and STAT3 are important TFs for COVID-19. mir-335-5p, miR-335-5p and hsa-mir-26a-5p were associated with COVID-19. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecules and drug-targets interaction. Conclusion We performed a functional analysis under ontology terms and pathway analysis and found some common associations among COVID-19, ARDS and sepsis. Transcription factors–genes interaction, protein–drug interactions, and DEGs-miRNAs coregulatory network with common DEGs were also identified on the datasets. We believe that the candidate drugs obtained in this study may contribute to the effective treatment of COVID-19.
Gudima et al., Antiviral Therapy of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms24108867
Since the beginning of the COVID-19 pandemic, the scientific community has focused on prophylactic vaccine development. In parallel, the experience of the pharmacotherapy of this disease has increased. Due to the declining protective capacity of vaccines against new strains, as well as increased knowledge about the structure and biology of the pathogen, control of the disease has shifted to the focus of antiviral drug development over the past year. Clinical data on safety and efficacy of antivirals acting at various stages of the virus life cycle has been published. In this review, we summarize mechanisms and clinical efficacy of antiviral therapy of COVID-19 with drugs based on plasma of convalescents, monoclonal antibodies, interferons, fusion inhibitors, nucleoside analogs, and protease inhibitors. The current status of the drugs described is also summarized in relation to the official clinical guidelines for the treatment of COVID-19. In addition, here we describe innovative drugs whose antiviral effect is provided by antisense oligonucleotides targeting the SARS-CoV-2 genome. Analysis of laboratory and clinical data suggests that current antivirals successfully combat broad spectra of emerging strains of SARS-CoV-2 providing reliable defense against COVID-19.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Clair et al., High-throughput SARS-CoV-2 antiviral testing method using the Celigo Image Cytometer, Research Square, doi:10.21203/rs.3.rs-2846848/v1
Abstract The COVID-19 pandemic has created a worldwide public health crisis that has since resulted in 6.8 million reported deaths. The pandemic prompted the immediate response of researchers around the world to engage in rapid vaccine development, surveillance programs, and antiviral testing, which resulted in the delivery of multiple vaccines and repurposed antiviral drug candidates. However, the emergence of new highly transmissible SARS-CoV-2 variants has renewed the desire for discovering new antiviral drug candidates with high efficacy against the emerging variants of concern. Traditional antiviral testing methods employ the plaque-reduction neutralization tests (PRNTs), plaque assays, or RT-PCR analysis, but each assay can be tedious and time-consuming, requiring days to visualize and count plaques, or to prepare cell extractions for PCR analysis. In recent years, plate-based image cytometers have demonstrated high-throughput vaccine screening methods, which can be adopted for screening potential antiviral drug candidates. In this work, we developed a high-throughput antiviral testing method employing the Celigo Image Cytometer to investigate the efficacy of antiviral drug candidates on SARS-CoV-2 infectivity using a fluorescent reporter virus and their safety by measuring the cytotoxicity effects on the healthy host cell line using fluorescent viability stains. The Celigo Image Cytometer can provide an efficient and robust method to rapidly identify potential antiviral drugs to effectively combat the rapidly spreading SARS-CoV-2 virus and its variants during the pandemic.
Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, Journal of Clinical Medicine, doi:10.3390/jcm12082893
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including “Convalescent plasma therapy in COVID-19” or “Viral polymerase inhibitors” and “COVID-19” in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables—such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate—in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471
This work is a bibliographic review. The search for the necessary information was carried out in the months of November 2022 and January 2023. The databases used were as follows: Pubmed, Academic Google, Scielo, Scopus, and Cochrane library. Results: In total, 101 articles were selected after a review of 486 articles from databases and after applying the inclusion and exclusion criteria. The update on the molecular mechanism of human coronavirus (HCoV) infection was reviewed, describing possible therapeutic targets in the viral response phase. There are different strategies to prevent or hinder the introduction of the viral particle, as well as the replicative mechanism ((protease inhibitors and RNA-dependent RNA polymerase (RdRp)). The second phase of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) involves the activation of hyperinflammatory cascades of the host’s immune system. It is concluded that there are potential therapeutic targets and drugs under study in different proinflammatory pathways such as hydroxychloroquine, JAK inhibitors, interleukin 1 and 6 inhibitors, and interferons.
Leonidou et al., New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells, PLOS Computational Biology, doi:10.1371/journal.pcbi.1010903
COVID-19 is one of the deadliest respiratory diseases, and its emergence caught the pharmaceutical industry off guard. While vaccines have been rapidly developed, treatment options for infected people remain scarce, and COVID-19 poses a substantial global threat. This study presents a novel workflow to predict robust druggable targets against emerging RNA viruses using metabolic networks and information of the viral structure and its genome sequence. For this purpose, we implemented pymCADRE and PREDICATE to create tissue-specific metabolic models, construct viral biomass functions and predict host-based antiviral targets from more than one genome. We observed that pymCADRE reduces the computational time of flux variability analysis for internal optimizations. We applied these tools to create a new metabolic network of primary bronchial epithelial cells infected with SARS-CoV-2 and identified enzymatic reactions with inhibitory effects. The most promising reported targets were from the purine metabolism, while targeting the pyrimidine and carbohydrate metabolisms seemed to be promising approaches to enhance viral inhibition. Finally, we computationally tested the robustness of our targets in all known variants of concern, verifying our targets’ inhibitory effects. Since laboratory tests are time-consuming and involve complex readouts to track processes, our workflow focuses on metabolic fluxes within infected cells and is applicable for rapid hypothesis-driven identification of potentially exploitable antivirals concerning various viruses and host cell types.
Gautam et al., Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, Current Pharmaceutical Biotechnology, doi:10.2174/1389201024666230302113110
Abstract: COVID-19, an extremely transmissible and pathogenic viral disease, triggered a global pandemic that claimed lives worldwide. To date, there is no clear and fully effective treatment for COVID-19 disease. Nevertheless, the urgency to discover treatments that can turn the tide has led to the development of a variety of preclinical drugs that are potential candidates for probative results. Although most of these supplementary drugs are constantly being tested in clinical trials against COVID-19, recognized organizations have aimed to outline the prospects in which their use could be considered. A narrative assessment of current articles on COVID-19 disease and its therapeutic regulation was performed. This review outlines the use of various potential treatments against SARS CoV-2, categorized as fusion inhibitors, protease inhibitors, and RNA-dependent RNA polymerase inhibitors, which include antiviral drugs such as Umifenovir, Baricitinib, Camostatmesylate, Nafamostatmesylate, Kaletra, Paxlovide, Darunavir, Atazanavir, Remdesivir, Molnupiravir, Favipiravir, and Ribavirin. To understand the virology of SARS-CoV-2, potential therapeutic approaches for the treatment of COVID-19 disease, synthetic methods of potent drug candidates, and their mechanisms of action have been addressed in this review. It intends to help readers approach the accessible statistics on the helpful treatment strategies for COVID-19 disease and to serve as a valuable resource for future research in this area.
Zhong et al., Recent advances in small-molecular therapeutics for COVID-19, Precision Clinical Medicine, doi:10.1093/pcmedi/pbac024
Abstract The COVID-19 pandemic poses a fundamental challenge to global health. Since the outbreak of SARS-CoV-2, great efforts have been made to identify antiviral strategies and develop therapeutic drugs to combat the disease. There are different strategies for developing small molecular anti-SARS-CoV-2 drugs, including targeting coronavirus structural proteins (e.g. spike protein), non-structural proteins (nsp) (e.g. RdRp, Mpro, PLpro, helicase, nsp14, and nsp16), host proteases (e.g. TMPRSS2, cathepsin, and furin) and the pivotal proteins mediating endocytosis (e.g. PIKfyve), as well as developing endosome acidification agents and immune response modulators. Favipiravir and chloroquine are the anti-SARS-CoV-2 agents that were identified earlier in this epidemic and repurposed for COVID-19 clinical therapy based on these strategies. However, their efficacies are controversial. Currently, three small molecular anti-SARS-CoV-2 agents, remdesivir, molnupiravir, and Paxlovid (PF-07321332 plus ritonavir), have been granted emergency use authorization or approved for COVID-19 therapy in many countries due to their significant curative effects in phase III trials. Meanwhile, a large number of promising anti-SARS-CoV-2 drug candidates have entered clinical evaluation. The development of these drugs brings hope for us to finally conquer COVID-19. In this account, we conducted a comprehensive review of the recent advances in small molecule anti-SARS-CoV-2 agents according to the target classification. Here we present all the approved drugs and most of the important drug candidates for each target, and discuss the challenges and perspectives for the future research and development of anti-SARS-CoV-2 drugs.
Wang et al., Screening Potential Drugs for COVID-19 Based on Bound Nuclear Norm Regularization, Frontiers in Genetics, doi:10.3389/fgene.2021.749256
The novel coronavirus pneumonia COVID-19 infected by SARS-CoV-2 has attracted worldwide attention. It is urgent to find effective therapeutic strategies for stopping COVID-19. In this study, a Bounded Nuclear Norm Regularization (BNNR) method is developed to predict anti-SARS-CoV-2 drug candidates. First, three virus-drug association datasets are compiled. Second, a heterogeneous virus-drug network is constructed. Third, complete genomic sequences and Gaussian association profiles are integrated to compute virus similarities; chemical structures and Gaussian association profiles are integrated to calculate drug similarities. Fourth, a BNNR model based on kernel similarity (VDA-GBNNR) is proposed to predict possible anti-SARS-CoV-2 drugs. VDA-GBNNR is compared with four existing advanced methods under fivefold cross-validation. The results show that VDA-GBNNR computes better AUCs of 0.8965, 0.8562, and 0.8803 on the three datasets, respectively. There are 6 anti-SARS-CoV-2 drugs overlapping in any two datasets, that is, remdesivir, favipiravir, ribavirin, mycophenolic acid, niclosamide, and mizoribine. Molecular dockings are conducted for the 6 small molecules and the junction of SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2. In particular, niclosamide and mizoribine show higher binding energy of −8.06 and −7.06 kcal/mol with the junction, respectively. G496 and K353 may be potential key residues between anti-SARS-CoV-2 drugs and the interface junction. We hope that the predicted results can contribute to the treatment of COVID-19.
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit