Protocatechuic acid methyl ester for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Protocatechuic acid methyl ester may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed protocatechuic acid methyl ester in detail.
, Plants Metabolites as In Vitro Inhibitors of SARS-CoV-2 Targets: A Systematic Review and Computational Analysis, Drugs and Drug Candidates, doi:10.3390/ddc4020027
Background/Objectives: Since the emergence of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the discovery of compounds with antiviral potential from medicinal plants has been extensively researched. This study aimed to investigate plant metabolites with in vitro inhibitory potential against SARS-CoV-2 targets, including 3CLpro, PLpro, Spike protein, and RdRp. Methods: A systematic review was conducted following PRISMA guidelines, with literature searches performed in six electronic databases (Scielo, ScienceDirect, Scopus, Springer, Web of Science, and PubMed) from January 2020 to February 2024. Computational analyses using SwissADME, pkCSM, ADMETlab, ProTox3, Toxtree, and DataWarrior were performed to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as other medicinal chemistry parameters of these compounds. Results: A total of 330 plant-derived compounds with inhibitory activities against the proposed targets were identified, with compounds showing IC50 values as low as 0.01 μM. Our findings suggest that several plant metabolites exhibit significant in vitro inhibition of SARS-CoV-2 targets; however, few molecules exhibit drug development viability without further adjustments. Additionally, after these evaluations, two phenolic acids, salvianic acid A and protocatechuic acid methyl ester, stood out for their potential as candidates for developing antiviral therapies, with IC50 values of 2.15 μM against 3CLpro and 3.76 μM against PLpro; respectively; and satisfactory in silico drug-likeness and ADMET profiles. Conclusions: These results reinforce the importance of plant metabolites as potential targets for antiviral drug discovery.