Pilaralisib for COVID-19
Pilaralisib has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus, Bioinformatics, doi:10.1093/bioinformatics/btaa224
,
Abstract Motivation Since December 2019, the newly identified coronavirus SARS-CoV-2 has caused a massive health crisis worldwide and resulted in over 70 000 COVID-19 infections so far. Clinical drugs targeting SARS-CoV-2 are urgently needed to decrease the high fatality rate of confirmed COVID-19 patients. Traditional de novo drug discovery needs more than 10 years, so drug repurposing seems the best option currently to find potential drugs for treating COVID-19. Results Compared with traditional non-covalent drugs, covalent drugs have attracted escalating attention recent years due to their advantages in potential specificity upon careful design, efficiency and patient burden. We recently developed a computational protocol named as SCAR (steric-clashes alleviating receptors) for discovering covalent drugs. In this work, we used the SCAR protocol to identify possible covalent drugs (approved or clinically tested) targeting the main protease (3CLpro) of SARS-CoV-2. We identified 11 potential hits, among which at least six hits were exclusively enriched by the SCAR protocol. Since the preclinical or clinical information of these identified drugs is already available, they might be ready for being clinically tested in the treatment of COVID-19. Contact senliu.ctgu@gmail.com
In silico Drug Repurposing for COVID‐19: Targeting SARS‐CoV‐2 Proteins through Docking and Consensus Ranking, Molecular Informatics, doi:10.1002/minf.202000115
,
AbstractIn December 2019, an infectious disease caused by the coronavirus SARS‐CoV‐2 appeared in Wuhan, China. This disease (COVID‐19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, over 21 million people have been infected, with more than 750.000 casualties. Today, no vaccine or antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking‐based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS‐CoV‐2 target proteins: the spike or S‐protein, and two proteases, the main protease and the papain‐like protease. The S‐protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the analysis of our structure‐based compound screening, we propose several structurally diverse compounds (either FDA‐approved or in clinical trials) that could display antiviral activity against SARS‐CoV‐2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID‐19.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.