Conv. Plasma
Nigella Sativa

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Peginterferon alfa-2b for COVID-19

Peginterferon alfa-2b has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Tsai et al., Translating GWAS Findings to Inform Drug Repositioning Strategies for COVID-19 Treatment, Research Square, doi:10.21203/
Abstract We developed a computational framework that integrates Genome-Wide Association Studies (GWAS) and post-GWAS analyses, designed to facilitate drug repurposing for COVID-19 treatment. The comprehensive approach combines transcriptomic-wide associations, polygenic priority scoring, 3D genomics, viral-host protein-protein interactions, and small-molecule docking. Through GWAS, we identified nine druggable host genes associated with COVID-19 severity and SARS-CoV-2 infection, all of which show differential expression in COVID-19 patients. These genes include IFNAR1, IFNAR2, TYK2, IL10RB, CXCR6, CCR9, and OAS1. We performed an extensive molecular docking analysis of these targets using 553 small molecules derived from five therapeutically enriched categories, namely antibacterials, antivirals, antineoplastics, immunosuppressants, and anti-inflammatories. This analysis, which comprised over 20,000 individual docking analyses, enabled the identification of several promising drug candidates. All results are available via the DockCoV2 database ( The computational framework ultimately identified nine potential drug candidates: Peginterferon alfa-2b, Interferon alfa-2b, Interferon beta-1b, Ruxolitinib, Dactinomycin, Rolitetracycline, Irinotecan, Vinblastine, and Oritavancin. While its current focus is on COVID-19, our proposed computational framework can be applied more broadly to assist in drug repurposing efforts for a variety of diseases. Overall, this study underscores the potential of human genetic studies and the utility of a computational framework for drug repurposing in the context of COVID-19 treatment, providing a valuable resource for researchers in this field.
Ma et al., Integration of human organoids single‐cell transcriptomic profiles and human genetics repurposes critical cell type‐specific drug targets for severe COVID‐19, Cell Proliferation, doi:10.1111/cpr.13558
AbstractHuman organoids recapitulate the cell type diversity and function of their primary organs holding tremendous potentials for basic and translational research. Advances in single‐cell RNA sequencing (scRNA‐seq) technology and genome‐wide association study (GWAS) have accelerated the biological and therapeutic interpretation of trait‐relevant cell types or states. Here, we constructed a computational framework to integrate atlas‐level organoid scRNA‐seq data, GWAS summary statistics, expression quantitative trait loci, and gene–drug interaction data for distinguishing critical cell populations and drug targets relevant to coronavirus disease 2019 (COVID‐19) severity. We found that 39 cell types across eight kinds of organoids were significantly associated with COVID‐19 outcomes. Notably, subset of lung mesenchymal stem cells increased proximity with fibroblasts predisposed to repair COVID‐19‐damaged lung tissue. Brain endothelial cell subset exhibited significant associations with severe COVID‐19, and this cell subset showed a notable increase in cell‐to‐cell interactions with other brain cell types, including microglia. We repurposed 33 druggable genes, including IFNAR2, TYK2, and VIPR2, and their interacting drugs for COVID‐19 in a cell‐type‐specific manner. Overall, our results showcase that host genetic determinants have cellular‐specific contribution to COVID‐19 severity, and identification of cell type‐specific drug targets may facilitate to develop effective therapeutics for treating severe COVID‐19 and its complications.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.