Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Nigelladine A for COVID-19

Nigelladine A has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Miraz et al., Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study, International Journal of Clinical Practice, doi:10.1155/2023/9917306
COVID-19 has been a threat to the entire world for more than two years since its outbreak in December 2019 in Wuhan city of China. SARS-CoV-2, the causative agent, had been reported to mutate over time exposing new variants. To date, no impeccable cure for the disease has been unveiled. This study outlines an extensive in silico approach to scrutinize certain phytochemical compounds of Nigella sativa (mainly the black cumin seeds) targeting the spike protein and the main protease (Mpro) enzyme of the Omicron variant of SARS-CoV-2. The objective of this study is to investigate the extracted compounds with a view to developing a potential inhibitor against the concerned SARS-CoV-2 variant. The investigation contemplates drug-likeness analysis, molecular docking study, ADME and toxicity prediction, and molecular dynamics simulation which have been executed to elucidate different phytochemical and pharmacological properties of the tested compounds. Based on drug-likeness parameters, a total of 96 phytochemical compounds from N. sativa have been screened in the study. Interestingly, Nigelladine A among the compounds exhibited the highest docking score with both the targets with the same binding affinity which is −7.8 kcal/mol. However, dithymoquinone, kaempferol, Nigelladine B, Nigellidine, and Nigellidine sulphate showed mentionable docking scores. Molecular dynamics up to 100 nanoseconds were simulated under GROMOS96 43a1 force field for the protein-ligand complexes exhibiting the top-docking score. The root mean square deviations (RMSD), root mean square fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and the number of hydrogen bonds have been evaluated during the simulation. From the findings, the present study suggests that Nigelladine A showed the most promising results among the selected molecules. This framework, however, interprets only a group of computational analyses on selected phytochemicals. Further investigations are required to validate the compound as a promising drug against the selected variant of SARS-CoV-2.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit