NE-52-QQ57 for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
NE-52-QQ57 may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed NE-52-QQ57 in detail.
, Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future, Frontiers in Microbiology, doi:10.3389/fmicb.2023.1232453
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
, The GPR4 antagonist NE-52-QQ57 increases survival, mitigates the hyperinflammatory response and reduces viral load in SARS-CoV-2-infected K18-hACE2 transgenic mice, Frontiers in Pharmacology, doi:10.3389/fphar.2025.1549296
COVID-19 (Coronavirus disease 19) is caused by infection with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) in the respiratory system and other organ systems. Tissue injuries resulting from viral infection and host hyperinflammatory responses may lead to moderate to severe pneumonia, systemic complications, and even death. While anti-inflammatory agents have been used to treat patients with severe COVID-19, their therapeutic effects are limited. GPR4 (G protein-coupled receptor 4) is a pro-inflammatory receptor expressed on vascular endothelial cells, regulating leukocyte infiltration and inflammatory responses. In this study, we evaluated the effects of a GPR4 antagonist, NE-52-QQ57, in the SARS-CoV-2-infected K18-hACE2 transgenic mouse model. Our results demonstrated that GPR4 antagonist treatment increased the survival rate in this severe COVID-19 mouse model. The inflammatory response, characterized by proinflammatory cytokines and chemokines, was reduced in the GPR4 antagonist group compared with the vehicle group. Additionally, both SARS-CoV-2 RNA copy numbers and infectious viral titers in the mouse lung were decreased in the GPR4 antagonist group. The percentage of SARS-CoV-2 antigen-positive mouse brains was also decreased in the GPR4 antagonist group compared to the vehicle group. Furthermore, the GPR4 antagonist inhibited SARS-CoV-2 propagation in Vero E6 and Caco-2 cells. Together, these results suggest that GPR4 antagonism may be explored as a novel approach for the treatment of COVID-19 and other similar viral diseases.