Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

N4-hydroxycytidine for COVID-19

N4-hydroxycytidine has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Lou et al., Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph–Based Approach, Journal of Medical Internet Research, doi:10.2196/45225
Background The global pandemics of severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 have caused unprecedented crises for public health. Coronaviruses are constantly evolving, and it is unknown which new coronavirus will emerge and when the next coronavirus will sweep across the world. Knowledge graphs are expected to help discover the pathogenicity and transmission mechanism of viruses. Objective The aim of this study was to discover potential targets and candidate drugs to repurpose for coronaviruses through a knowledge graph–based approach. Methods We propose a computational and evidence-based knowledge discovery approach to identify potential targets and candidate drugs for coronaviruses from biomedical literature and well-known knowledge bases. To organize the semantic triples extracted automatically from biomedical literature, a semantic conversion model was designed. The literature knowledge was associated and integrated with existing drug and gene knowledge through semantic mapping, and the coronavirus knowledge graph (CovKG) was constructed. We adopted both the knowledge graph embedding model and the semantic reasoning mechanism to discover unrecorded mechanisms of drug action as well as potential targets and drug candidates. Furthermore, we have provided evidence-based support with a scoring and backtracking mechanism. Results The constructed CovKG contains 17,369,620 triples, of which 641,195 were extracted from biomedical literature, covering 13,065 concept unique identifiers, 209 semantic types, and 97 semantic relations of the Unified Medical Language System. Through multi-source knowledge integration, 475 drugs and 262 targets were mapped to existing knowledge, and 41 new drug mechanisms of action were found by semantic reasoning, which were not recorded in the existing knowledge base. Among the knowledge graph embedding models, TransR outperformed others (mean reciprocal rank=0.2510, Hits@10=0.3505). A total of 33 potential targets and 18 drug candidates were identified for coronaviruses. Among them, 7 novel drugs (ie, quinine, nelfinavir, ivermectin, asunaprevir, tylophorine, Artemisia annua extract, and resveratrol) and 3 highly ranked targets (ie, angiotensin converting enzyme 2, transmembrane serine protease 2, and M protein) were further discussed. Conclusions We showed the effectiveness of a knowledge graph–based approach in potential target discovery and drug repurposing for coronaviruses. Our approach can be extended to other viruses or diseases for biomedical knowledge discovery and relevant applications.
Guo et al., Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, Briefings in Bioinformatics, doi:10.1093/bib/bbac628
Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit