Conv. Plasma
Nigella Sativa

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Paxlovid Meta
Famotidine Meta Quercetin Meta
Favipiravir Meta Remdesivir Meta
Fluvoxamine Meta Thermotherapy Meta
Hydroxychlor.. Meta
Ivermectin Meta

Maribavir for COVID-19

Maribavir has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Rabie et al., Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, Medicinal Chemistry Research, doi:10.1007/s00044-022-02970-3
AbstractMysterious evolution of a new strain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the Omicron variant, led to a new challenge in the persistent coronavirus disease 2019 (COVID-19) battle. Objecting the conserved SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3′-to-5′ exoribonuclease (ExoN) together using one ligand is a successful new tactic to stop SARS-CoV-2 multiplication and COVID-19 progression. The current comprehensive study investigated most nucleoside analogs (NAs) libraries, searching for the most ideal drug candidates expectedly able to act through this double tactic. Gradual computational filtration afforded six different promising NAs, riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir. Further biological assessment proved that riboprine and forodesine are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.21 and 0.45 μM for riboprine and about 0.23 and 0.70 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. These biochemical findings were supported by the prior in silico data. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading. These findings suggest that riboprine and forodesine could serve as prospective lead compounds against COVID-19.
Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, International Journal of Molecular Sciences, doi:10.3390/ijms231911009
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the pathogenic cause of coronavirus disease 2019 (COVID-19). The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a potential target for the treatment of COVID-19. An RdRp complex:dsRNA structure suitable for docking simulations was prepared using a cryo-electron microscopy (cryo-EM) structure (PDB ID: 7AAP; resolution, 2.60 Å) that was reported recently. Structural refinement was performed using energy calculations. Structure-based virtual screening was performed using the ChEMBL database. Through 1,838,257 screenings, 249 drugs (37 approved, 93 clinical, and 119 preclinical drugs) were predicted to exhibit a high binding affinity for the RdRp complex:dsRNA. Nine nucleoside triphosphate analogs with anti-viral activity were included among these hit drugs, and among them, remdesivir-ribonucleoside triphosphate and favipiravir-ribonucleoside triphosphate adopted a similar docking mode as that observed in the cryo-EM structure. Additional docking simulations for the predicted compounds with high binding affinity for the RdRp complex:dsRNA suggested that 184 bioactive compounds could be anti-SARS-CoV-2 drug candidates. The hit bioactive compounds mainly consisted of a typical noncovalent major groove binder for dsRNA. Three-layer ONIOM (MP2/6-31G:AM1:AMBER) geometry optimization calculations and frequency analyses (MP2/6-31G:AMBER) were performed to estimate the binding free energy of a representative bioactive compound obtained from the docking simulation, and the fragment molecular orbital calculation at the MP2/6-31G level of theory was subsequently performed for analyzing the detailed interactions. The procedure used in this study represents a possible strategy for discovering anti-SARS-CoV-2 drugs from drug libraries that could significantly shorten the clinical development period for drug repositioning.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.