Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Luteolin-7-O-glucuronide for COVID-19

Luteolin-7-O-glucuronide has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Trischitta et al., Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review, International Journal of Molecular Sciences, doi:10.3390/ijms25105188
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus’s entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Pennisi et al., An Integrated In Silico and In Vitro Approach for the Identification of Natural Products Active against SARS-CoV-2, Biomolecules, doi:10.3390/biom14010043
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit