Lucanthone for COVID-19

COVID-19 involves the interplay of over 100 viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed over 9,000 potential treatments.
c19early.org analyzes
170+ treatments.
Identification of Shared Gene Signatures Associated with Alzheimer’s Disease and COVID-19 through Bioinformatics Analysis, Combinatorial Chemistry & High Throughput Screening, doi:10.2174/0113862073383437250528173103
,
Background: Some studies have shown a link between Alzheimer's disease (AD) and COVID-19. This includes a Mendelian randomization study, which suggests that Alzheimer's disease and COVID-19 may be causally linked in terms of pathogenic mechanisms. However, there are fewer studies related to the two in terms of common pathogenic genes and immune infiltration. We conducted this study to identify key genes in COVID-19 linked to Alzheimer's disease, assess their relevance to immune cell profiles, and explore potential novel biomarkers. Methods: The RNA datasets GSE157103 and GSE125583 for COVID-19 and Alzheimer's disease, respectively, were acquired via the GEO database and subsequently processed. Through the utilization of differential expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA), genes associated with Alzheimer's disease and COVID-19 were identified. The immune cell signatures were estimated using the xCell algorithm, and correlation analysis identified links between key genes and significantly different immune cell signatures. Finally, we conducted transcription factor (TF) analysis, mRNA analysis, and sensitivity drug analysis. Results: Differential analysis identified 3560 (2099 up-regulated and 1461 down-regulated) and 1456 (640 up-regulated and 816 down-regulated) differential genes for COVID-19 and AD compared to normal controls, respectively. WGCNA analysis revealed 254 key module genes for COVID-19 and 791 for AD. We combined the differential genes and WGCNA key module genes for each disease to obtain two gene sets. The intersection of these two gene sets was examined to obtain intersecting genes. Subsequently, PPI network analysis was conducted, leading to the identification of 12 hub genes. Then, 12 immune-related hub genes were further identified. Immune infiltration patterns and the correlation between 12 hub genes and 64 immune cell types were analyzed. The analysis revealed a significant positive correlation between the two diseases under study. The relationship network between Transcription Factors and mRNA, as well as the predictions of drugs, further illustrate the strong association between the two diseases. This provides valuable information for further target exploration and drug screening. Conclusion: Our study suggests potential shared genes, signalling pathways, and common drug candidates that may be associated with COVID-19 and AD. This may provide insights for future studies of AD patients infected with SARS-CoV-2 and help improve diagnostic and therapeutic approaches.
Bioinformatics and system biology approach to identify potential common pathogenesis for COVID-19 infection and sarcopenia, Frontiers in Medicine, doi:10.3389/fmed.2024.1378846
,
Sarcopenia is a condition characterized by age-related loss of muscle mass and strength. Increasing evidence suggests that patients with sarcopenia have higher rates of coronavirus 2019 (COVID-19) infection and poorer post-infection outcomes. However, the exact mechanism and connections between the two is unknown. In this study, we used high-throughput data from the GEO database for sarcopenia (GSE111016) and COVID-19 (GSE171110) to identify common differentially expressed genes (DEGs). We conducted GO and KEGG pathway analyses, as well as PPI network analysis on these DEGs. Using seven algorithms from the Cytoscape plug-in cytoHubba, we identified 15 common hub genes. Further analyses included enrichment, PPI interaction, TF-gene and miRNA-gene regulatory networks, gene-disease associations, and drug prediction. Additionally, we evaluated immune cell infiltration with CIBERSORT and assessed the diagnostic accuracy of hub genes for sarcopenia and COVID-19 using ROC curves. In total, we identified 66 DEGs (34 up-regulated and 32 down-regulated) and 15 hub genes associated with sarcopenia and COVID-19. GO and KEGG analyses revealed functions and pathways between the two diseases. TF-genes and TF-miRNA regulatory network suggest that FOXOC1 and hsa-mir-155-5p may be identified as key regulators, while gene-disease analysis showed strong correlations with hub genes in schizophrenia and bipolar disorder. Immune infiltration showed a correlation between the degree of immune infiltration and the level of infiltration of different immune cell subpopulations of hub genes in different datasets. The ROC curves for ALDH1L2 and KLF5 genes demonstrated their potential as diagnostic markers for both sarcopenia and COVID-19. This study suggests that sarcopenia and COVID-19 may share pathogenic pathways, and these pathways and hub genes offer new targets and strategies for early diagnosis, effective treatment, and tailored therapies for sarcopenia patients with COVID-19.
Please send us corrections, updates, or comments.
c19early involves the extraction of 200,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. IMA and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.