Licoisoflavanone for COVID-19

COVID-19 involves the interplay of over 100 viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed over 9,000 potential treatments.
c19early.org analyzes
130+ treatments.
Exploring Erythrina flavonoids as potential SARS-CoV-2 RdRp inhibitors through virtual screening, in silico ADMET evaluation, and molecular dynamics simulation studies, Scientific Reports, doi:10.1038/s41598-025-97311-w
,
Abstract The COVID-19 pandemic, caused by SARS-CoV-2, has intensified the search for effective antiviral agents. This study investigates the inhibitory potential of 473 flavonoids from the genus Erythrina against the key enzyme of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp). Virtual screening campaign using molecular docking identified 128 flavonoids with stronger binding energies to RdRp than remdesivir, a WHO-endorsed drug. Lipinski’s Rule of Five and ADMET profiling suggested butein (119) as the promising RdRp inhibitor. Moreover, molecular dynamics simulations revealed that 119 binds effectively to RdRp and interacts with the RNA template and primer, suggesting a multi-faceted inhibitory mechanism. Our findings highlight the potential of Erythrina-derived flavonoids, particularly compound 119, as potent RdRp inhibitors, warranting further experimental studies.
Deep learning-based network pharmacology for exploring the mechanism of licorice for the treatment of COVID-19, Scientific Reports, doi:10.1038/s41598-023-31380-7
,
AbstractLicorice, a traditional Chinese medicine, has been widely used for the treatment of COVID-19, but all active compounds and corresponding targets are still not clear. Therefore, this study proposed a deep learning-based network pharmacology approach to identify more potential active compounds and targets of licorice. 4 compounds (quercetin, naringenin, liquiritigenin, and licoisoflavanone), 2 targets (SYK and JAK2) and the relevant pathways (P53, cAMP, and NF-kB) were predicted, which were confirmed by previous studies to be associated with SARS-CoV-2-infection. In addition, 2 new active compounds (glabrone and vestitol) and 2 new targets (PTEN and MAP3K8) were further validated by molecular docking and molecular dynamics simulations (simultaneous molecular dynamics), as well as the results showed that these active compounds bound well to COVID-19 related targets, including the main protease (Mpro), the spike protein (S-protein) and the angiotensin-converting enzyme 2 (ACE2). Overall, in this study, glabrone and vestitol from licorice were found to inhibit viral replication by inhibiting the activation of Mpro, S-protein and ACE2; related compounds in licorice may reduce the inflammatory response and inhibit apoptosis by acting on PTEN and MAP3K8. Therefore, licorice has been proposed as an effective candidate for the treatment of COVID-19 through PTEN, MAP3K8, Mpro, S-protein and ACE2.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. IMA and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.