Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Paxlovid Meta
Famotidine Meta Quercetin Meta
Favipiravir Meta Remdesivir Meta
Fluvoxamine Meta Thermotherapy Meta
Hydroxychlor.. Meta
Ivermectin Meta

Lentinan for COVID-19

Lentinan has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Fan et al., Safety and efficacy of lentinan nasal drops in patients infected with the variant of COVID-19: a randomized, placebo-controlled trial, Frontiers in Pharmacology, doi:10.3389/fphar.2023.1292479
Objective: Lentinan has antiviral, anti-tumor, immunomodulatory, stimulating interferon production, and other pharmacological effects. Previous animal experiments have shown that lentinan nasal drops can assist [Corona Virus Disease 2019) COVID-19] vaccine to induce high levels of neutralizing antibodies and can effectively resist the invasion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to evaluate the safety and efficacy of lentinan nasal drops in patients infected with Omicron (SARS-CoV-2 variant) through a dose-escalation study and a placebo-controlled trial.Methods: A randomized, placebo-controlled trial. The study was divided into two phases: Phase I: a dose escalation trial in which 24 COVID-19 patients were enrolled, that is, 12 in the escalation dose group (50, 75, and 100 µg/day) and 12 in the standard treatment group. The aim was to evaluate the safety and tolerance of lentinan nasal drops. The second stage was a placebo-controlled study. The optimal dose group of the first stage was used as the therapeutic dose, and the sample size was expanded to verify the anti-COVID-19 efficacy of lentinan nasal drops.Results: In the dose-increasing study, lentinan nasal drops showed good safety, and no serious adverse reactions occurred. The virus shedding time of the 100 µg dose group was significantly shorter than that in the control group (7.75 ± 1.71 VS 13.41 ± 3.8 days) (p = 0.01), and the 100 µg/day lentinan nasal drops were tolerated well. The results of the placebo-controlled study showed that compared with that in the placebo group, the time for COVID-19 antigen to turn negative was significantly shorter in the 100 µg lentinan nasal drop group (p = 0.0298), but no significant difference was observed in symptom improvement between the two groups. In the placebo-controlled study, two patients experienced mild nasal discomfort with nasal drops, but the symptoms relieved themselves.Conclusion: Lentinan nasal drops are tolerated well and can shorten the time of virus clearance.
Chen et al., Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates, F1000Research, doi:10.12688/f1000research.22457.2
<ns4:p>We prepared the three-dimensional model of the SARS-CoV-2 (aka 2019-nCoV) 3C-like protease (3CL<ns4:sup>pro</ns4:sup>) using the crystal structure of the highly similar (96% identity) ortholog from the SARS-CoV. All residues involved in the catalysis, substrate binding and dimerisation are 100% conserved. Comparison of the polyprotein PP1AB sequences showed 86% identity. The 3C-like cleavage sites on the coronaviral polyproteins are highly conserved. Based on the near-identical substrate specificities and high sequence identities, we are of the opinion that some of the previous progress of specific inhibitors development for the SARS-CoV enzyme can be conferred on its SARS-CoV-2 counterpart. With the 3CL<ns4:sup>pro</ns4:sup> molecular model, we performed virtual screening for purchasable drugs and proposed 16 candidates for consideration. Among these, the antivirals ledipasvir or velpatasvir are particularly attractive as therapeutics to combat the new coronavirus with minimal side effects, commonly fatigue and headache. The drugs Epclusa (velpatasvir/sofosbuvir) and Harvoni (ledipasvir/sofosbuvir) could be very effective owing to their dual inhibitory actions on two viral enzymes.</ns4:p>
Baruah et al., Therapeutic Potential of Bioactive Compounds from Edible Mushrooms to Attenuate SARS-CoV-2 Infection and Some Complications of Coronavirus Disease (COVID-19), Journal of Fungi, doi:10.3390/jof9090897
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind’s social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit