Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Isochlorogenic acid A for COVID-19

Isochlorogenic acid A has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Trischitta et al., Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review, International Journal of Molecular Sciences, doi:10.3390/ijms25105188
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus’s entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
Wu et al., Coffee as a dietary strategy to prevent SARS-CoV-2 infection, Cell & Bioscience, doi:10.1186/s13578-023-01154-9
Abstract Background To date, most countries lifted the restriction requirement and coexisted with SARS-CoV-2. Thus, dietary behavior for preventing SARS-CoV-2 infection becomes an interesting issue on a daily basis. Coffee consumption is connected with reduced COVID-19 risk and correlated to COVID-19 severity. However, the mechanisms of coffee for the reduction of COVID-19 risk are still unclear. Results Here, we identified that coffee can inhibit multiple variants of the SARS-CoV-2 infection by restraining the binding of the SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2 (ACE2), and reducing transmembrane serine protease 2 (TMPRSS2) and cathepsin L (CTSL) activity. Then, we used the method of "Here" (HRMS-exploring-recombination-examining) and found that isochlorogenic acid A, B, and C of coffee ingredients showed their potential to inhibit SARS-CoV-2 infection (inhibitory efficiency 43–54%). In addition, decaffeinated coffee still preserves inhibitory activity against SARS-CoV-2. Finally, in a human trial of 64 subjects, we identified that coffee consumption (approximately 1–2 cups/day) is sufficient to inhibit infection of multiple variants of SARS-CoV-2 entry, suggesting coffee could be a dietary strategy to prevent SARS-CoV2 infection. Conclusions This study verified moderate coffee consumption, including decaffeination, can provide a new guideline for the prevention of SARS-CoV-2. Based on the results, we also suggest a coffee-drinking plan for people to prevent infection in the post-COVID-19 era.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit