Imiquimod for COVID-19
Imiquimod has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
A genetically based computational drug repurposing framework for rapid identification of candidate compounds: application to COVID-19, medRxiv, doi:10.1101/2025.01.10.25320348
,
Background The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge. Methods To benchmark the drug repurposing framework, we first performed a 5-method-rank-based computational drug prioritization pipeline by integrating multi-tissue GReX associated with COVID-19-related hospitalization, with drug transcriptional signature libraries from the Library of Integrated Network-Based Cellular Signatures. We prioritized FDA-approved medications from the 10 top-ranked compounds, and assessed their association with COVID-19 incidence within the Veterans Health Administration (VHA) cohort (~9 million individuals). In parallel, we evaluated in vitro SARS-CoV-2 replication inhibition in human lung epithelial cells for the selected candidates. Results Our in silico pipeline identified seven FDA-approved drugs among the top ten candidates. Six (imiquimod, nelfinavir and saquinavir, everolimus, azathioprine, and retinol) had sufficient prescribing rates or feasibility for further testing. In the VHA cohort, azathioprine (odds ratio [OR]=0.69, 95% CI 0.62-0.77) and retinol (OR=0.81, 95% CI 0.72-0.92) were significantly associated with reduced COVID-19 incidence. Conversely, nelfinavir and saquinavir demonstrated potent SARS-CoV-2 inhibition in vitro (~95% and ~65% viral load reduction, respectively). No single compound showed robust protection in both in vivo and in vitro settings. Conclusions These findings underscore the power of GReX-based drug repurposing in rapidly identifying existing therapies with potential clinical relevance; four out of six compounds showed a protective effect in one of the two validation approaches. Crucially, our results highlight how a complementary evaluation-combining epidemiological data and in vitro assays-helps refine the most promising candidates for subsequent mechanistic studies and clinical trials. This integrated validation approach may prove vital for accelerating therapeutic development against current and future health challenges.
A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19, Narra J, doi:10.52225/narra.v2i3.92
,
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches, Frontiers in Immunology, doi:10.3389/fimmu.2023.1282859
,
IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.