Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Hexamethonium dibromide dihydrate for COVID-19

Hexamethonium dibromide dihydrate has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Sen et al., Optimization of a micro-scale air–liquid-interface model of human proximal airway epithelium for moderate throughput drug screening for SARS-CoV-2, Respiratory Research, doi:10.1186/s12931-025-03095-y
Abstract Background Many respiratory viruses attack the airway epithelium and cause a wide spectrum of diseases for which we have limited therapies. To date, a few primary human stem cell-based models of the proximal airway have been reported for drug discovery but scaling them up to a higher throughput platform remains a significant challenge. As a result, most of the drug screening assays for respiratory viruses are performed on commercial cell line-based 2D cultures that provide limited translational ability. Methods We optimized a primary human stem cell-based mucociliary airway epithelium model of SARS-CoV-2 infection, in 96-well air–liquid-interface (ALI) format, which is amenable to moderate throughput drug screening. We tested the model against SARS-CoV-2 parental strain (Wuhan) and variants Beta, Delta, and Omicron. We applied this model to screen 2100 compounds from targeted drug libraries using a high throughput-high content image-based quantification method. Results The model recapitulated the heterogeneity of infection among patients with SARS-CoV-2 parental strain and variants. While there were heterogeneous responses across variants for host factor targeting compounds, the two direct-acting antivirals we tested, Remdesivir and Paxlovid, showed consistent efficacy in reducing infection across all variants and donors. Using the model, we characterized a new antiviral drug effective against both the parental strain and the Omicron variant. Conclusion This study demonstrates that the 96-well ALI model of primary human mucociliary epithelium can recapitulate the heterogeneity of infection among different donors and SARS-CoV-2 variants and can be used for moderate throughput screening. Compounds that target host factors showed variability among patients in response to SARS-CoV-2, while direct-acting antivirals were effective against SARS-CoV-2 despite the heterogeneity of patients tested.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit