Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lactoferrin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Azvudine Meta Metformin Meta
Bromhexine Meta
Budesonide Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Famotidine Meta Nitazoxanide Meta
Favipiravir Meta Paxlovid Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

GS-441524 for COVID-19

GS-441524 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Wang et al., Preclinical Pharmacokinetics and In Vitro Properties of GS-441524, a Potential Oral Drug Candidate for COVID-19 Treatment, Frontiers in Pharmacology, doi:10.3389/fphar.2022.918083
Preclinical pharmacokinetics (PK) and In Vitro ADME properties of GS-441524, a potential oral agent for the treatment of Covid-19, were studied. GS-441524 was stable in vitro in liver microsomes, cytosols, and hepatocytes of mice, rats, monkeys, dogs, and humans. The plasma free fractions of GS-441524 were 62–78% across all studied species. The in vitro transporter study results showed that GS-441524 was a substrate of MDR1, BCRP, CNT3, ENT1, and ENT2; but not a substrate of CNT1, CNT2, and ENT4. GS-441524 had a low to moderate plasma clearance (CLp), ranging from 4.1 mL/min/kg in dogs to 26 mL/min/kg in mice; the steady state volume distribution (Vdss) ranged from 0.9 L/kg in dogs to 2.4 L/kg in mice after IV administration. Urinary excretion appeared to be the major elimination process for GS-441524. Following oral administration, the oral bioavailability was 8.3% in monkeys, 33% in rats, 39% in mice, and 85% in dogs. The PK and ADME properties of GS-441524 support its further development as an oral drug candidate.
Heiser et al., Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2, bioRxiv, doi:10.1101/2020.04.21.054387
AbstractTo identify potential therapeutic stop-gaps for SARS-CoV-2, we evaluated a library of 1,670 approved and reference compounds in an unbiased, cellular image-based screen for their ability to suppress the broad impacts of the SARS-CoV-2 virus on phenomic profiles of human renal cortical epithelial cells using deep learning. In our assay, remdesivir is the only antiviral tested with strong efficacy, neither chloroquine nor hydroxychloroquine have any beneficial effect in this human cell model, and a small number of compounds not currently being pursued clinically for SARS-CoV-2 have efficacy. We observed weak but beneficial class effects of β-blockers, mTOR/PI3K inhibitors and Vitamin D analogues and a mild amplification of the viral phenotype with β-agonists.
Sha et al., Current state-of-the-art and potential future therapeutic drugs against COVID-19, Frontiers in Cell and Developmental Biology, doi:10.3389/fcell.2023.1238027
The novel coronavirus disease (COVID-19) continues to endanger human health, and its therapeutic drugs are under intensive research and development. Identifying the efficacy and toxicity of drugs in animal models is helpful for further screening of effective medications, which is also a prerequisite for drugs to enter clinical trials. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invades host cells mainly by the S protein on its surface. After the SARS-CoV-2 RNA genome is injected into the cells, M protein will help assemble and release new viruses. RdRp is crucial for virus replication, assembly, and release of new virus particles. This review analyzes and discusses 26 anti-SARS-CoV-2 drugs based on their mechanism of action, effectiveness and safety in different animal models. We propose five drugs to be the most promising to enter the next stage of clinical trial research, thus providing a reference for future drug development.
Please send us corrections, updates, or comments. c19early involves the extraction of over 100,000 datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit