Conv. Plasma
Nigella Sativa
Peg.. Lambda

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta
Cannabidiol Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Ensovibep Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Peg.. Lambda Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

Glycyrrhizin for COVID-19

Glycyrrhizin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Qu et al., A new integrated framework for the identification of potential virus–drug associations, Frontiers in Microbiology, doi:10.3389/fmicb.2023.1179414
IntroductionWith the increasingly serious problem of antiviral drug resistance, drug repurposing offers a time-efficient and cost-effective way to find potential therapeutic agents for disease. Computational models have the ability to quickly predict potential reusable drug candidates to treat diseases.MethodsIn this study, two matrix decomposition-based methods, i.e., Matrix Decomposition with Heterogeneous Graph Inference (MDHGI) and Bounded Nuclear Norm Regularization (BNNR), were integrated to predict anti-viral drugs. Moreover, global leave-one-out cross-validation (LOOCV), local LOOCV, and 5-fold cross-validation were implemented to evaluate the performance of the proposed model based on datasets of DrugVirus that consist of 933 known associations between 175 drugs and 95 viruses.ResultsThe results showed that the area under the receiver operating characteristics curve (AUC) of global LOOCV and local LOOCV are 0.9035 and 0.8786, respectively. The average AUC and the standard deviation of the 5-fold cross-validation for DrugVirus datasets are 0.8856 ± 0.0032. We further implemented cross-validation based on MDAD and aBiofilm, respectively, to evaluate the performance of the model. In particle, MDAD (aBiofilm) dataset contains 2,470 (2,884) known associations between 1,373 (1,470) drugs and 173 (140) microbes. In addition, two types of case studies were carried out further to verify the effectiveness of the model based on the DrugVirus and MDAD datasets. The results of the case studies supported the effectiveness of MHBVDA in identifying potential virus-drug associations as well as predicting potential drugs for new microbes.
Rafiq et al., A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products, Molecules, doi:10.3390/molecules28124860
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2—the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins—were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Srivastava et al., A Brief Review on Medicinal Plants-At-Arms against COVID-19, Interdisciplinary Perspectives on Infectious Diseases, doi:10.1155/2023/7598307
COVID-19 pandemic caused by the novel SARS-CoV-2 has impacted human livelihood globally. Strenuous efforts have been employed for its control and prevention; however, with recent reports on mutated strains with much higher infectivity, transmissibility, and ability to evade immunity developed from previous SARS-CoV-2 infections, prevention alternatives must be prepared beforehand in case. We have perused over 128 recent works (found on Google Scholar, PubMed, and ScienceDirect as of February 2023) on medicinal plants and their compounds for anti-SARS-CoV-2 activity and eventually reviewed 102 of them. The clinical application and the curative effect were reported high in China and in India. Accordingly, this review highlights the unprecedented opportunities offered by medicinal plants and their compounds, candidates as the therapeutic agent, against COVID-19 by acting as viral protein inhibitors and immunomodulator in (32 clinical trials and hundreds of in silico experiments) conjecture with modern science. Moreover, the associated foreseeable challenges for their viral outbreak management were discussed in comparison to synthetic drugs.
Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, Journal of Personalized Medicine, doi:10.3390/jpm13040664
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Bijelić et al., Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, Antibiotics, doi:10.3390/antibiotics11111614
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.