Fosinopril for COVID-19
Fosinopril has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Identification of FDA Approved Drugs Targeting COVID-19 Virus by Structure-Based Drug Repositioning, American Chemical Society (ACS), doi:10.26434/chemrxiv.12003930.v1
,
The new strain of Coronaviruses (SARS-CoV-2), and the resulting Covid-19 disease has spread swiftly across the globe after its initial detection in late December 2019 in Wuhan, China, resulting in a pandemic status declaration by WHO within 3 months. Given the heavy toll of this pandemic, researchers are actively testing various strategies including new and repurposed drugs as well as vaccines. In the current brief report, we adopted a repositioning approach using insilico molecular modeling screening using FDA approved drugs with established safety profiles for potential inhibitory effects on Covid-19 virus. We started with structure based drug design by screening more than 2000 FDA approved drugsagainst Covid-19 virus main protease enzyme (Mpro) substrate-binding pocket to identify potential hits based on their binding energies, binding modes, interacting amino acids, and therapeutic indications. In addition, we elucidate preliminary pharmacophore features for candidates bound to Covid-19 virus Mpro substratebinding pocket. The top hits include anti-viral drugs such as Darunavir, Nelfinavirand Saquinavir, some of which are already being tested in Covid-19 patients. Interestingly, one of the most promising hits in our screen is the hypercholesterolemia drug Rosuvastatin. These results certainly do not confirm or indicate antiviral activity, but can rather be used as a starting point for further in vitro and in vivo testing, either individually or in combination.
Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, Scientific Reports, doi:10.1038/s41598-023-30095-z
,
AbstractThe search for an effective drug is still urgent for COVID-19 as no drug with proven clinical efficacy is available. Finding the new purpose of an approved or investigational drug, known as drug repurposing, has become increasingly popular in recent years. We propose here a new drug repurposing approach for COVID-19, based on knowledge graph (KG) embeddings. Our approach learns “ensemble embeddings” of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. Ensemble KG-embeddings are subsequently used in a deep neural network trained for discovering potential drugs for COVID-19. Compared to related works, we retrieve more in-trial drugs among our top-ranked predictions, thus giving greater confidence in our prediction for out-of-trial drugs. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. We show that Fosinopril is a potential ligand for the SARS-CoV-2 nsp13 target. We also provide explanations of our predictions thanks to rules extracted from the KG and instanciated by KG-derived explanatory paths. Molecular evaluation and explanatory paths bring reliability to our results and constitute new complementary and reusable methods for assessing KG-based drug repurposing.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.