Conv. Plasma
Nigella Sativa

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Flunisolide for COVID-19

Flunisolide has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Bansal et al., A clustering and graph deep learning-based framework for COVID-19 drug repurposing, arXiv, doi:10.48550/arXiv.2306.13995
Drug repurposing (or repositioning) is the process of finding new therapeutic uses for drugs already approved by drug regulatory authorities (e.g., the Food and Drug Administration (FDA) and Therapeutic Goods Administration (TGA)) for other diseases. This involves analyzing the interactions between different biological entities, such as drug targets (genes/proteins and biological pathways) and drug properties, to discover novel drug-target or drug-disease relations. Artificial intelligence methods such as machine learning and deep learning have successfully analyzed complex heterogeneous data in the biomedical domain and have also been used for drug repurposing. This study presents a novel unsupervised machine learning framework that utilizes a graph-based autoencoder for multi-feature type clustering on heterogeneous drug data. The dataset consists of 438 drugs, of which 224 are under clinical trials for COVID-19 (category A). The rest are systematically filtered to ensure the safety and efficacy of the treatment (category B). The framework solely relies on reported drug data, including its pharmacological properties, chemical/physical properties, interaction with the host, and efficacy in different publicly available COVID-19 assays. Our machine-learning framework reveals three clusters of interest and provides recommendations featuring the top 15 drugs for COVID-19 drug repurposing, which were shortlisted based on the predicted clusters that were dominated by category A drugs. The anti-COVID efficacy of the drugs should be verified by experimental studies. Our framework can be extended to support other datasets and drug repurposing studies, given open-source code and data availability.
Li et al., Bioinformatics and system biology approach to identify the influences among COVID-19, ARDS and sepsis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1152186
Background Severe coronavirus disease 2019 (COVID -19) has led to severe pneumonia or acute respiratory distress syndrome (ARDS) worldwide. we have noted that many critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. The molecular mechanisms that underlie COVID-19, ARDS and sepsis are not well understood. The objectives of this study were to analyze potential molecular mechanisms and identify potential drugs for the treatment of COVID-19, ARDS and sepsis using bioinformatics and a systems biology approach. Methods Three RNA-seq datasets (GSE171110, GSE76293 and GSE137342) from Gene Expression Omnibus (GEO) were employed to detect mutual differentially expressed genes (DEGs) for the patients with the COVID-19, ARDS and sepsis for functional enrichment, pathway analysis, and candidate drugs analysis. Results We obtained 110 common DEGs among COVID-19, ARDS and sepsis. ARG1, FCGR1A, MPO, and TLR5 are the most influential hub genes. The infection and immune-related pathways and functions are the main pathways and molecular functions of these three diseases. FOXC1, YY1, GATA2, FOXL, STAT1 and STAT3 are important TFs for COVID-19. mir-335-5p, miR-335-5p and hsa-mir-26a-5p were associated with COVID-19. Finally, the hub genes retrieved from the DSigDB database indicate multiple drug molecules and drug-targets interaction. Conclusion We performed a functional analysis under ontology terms and pathway analysis and found some common associations among COVID-19, ARDS and sepsis. Transcription factors–genes interaction, protein–drug interactions, and DEGs-miRNAs coregulatory network with common DEGs were also identified on the datasets. We believe that the candidate drugs obtained in this study may contribute to the effective treatment of COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.