Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Dihydroergotamine for COVID-19

Dihydroergotamine has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ruan et al., Virtual high-throughput screening: Potential inhibitors targeting aminopeptidase N (CD13) and PIKfyve for SARS-CoV-2, Open Life Sciences, doi:10.1515/biol-2022-0637
Abstract Since the outbreak of the novel coronavirus nearly 3 years ago, the world’s public health has been under constant threat. At the same time, people’s travel and social interaction have also been greatly affected. The study focused on the potential host targets of SARS-CoV-2, CD13, and PIKfyve, which may be involved in viral infection and the viral/cell membrane fusion stage of SARS-CoV-2 in humans. In this study, electronic virtual high-throughput screening for CD13 and PIKfyve was conducted using Food and Drug Administration-approved compounds in ZINC database. The results showed that dihydroergotamine, Saquinavir, Olysio, Raltegravir, and Ecteinascidin had inhibitory effects on CD13. Dihydroergotamine, Sitagliptin, Olysio, Grazoprevir, and Saquinavir could inhibit PIKfyve. After 50 ns of molecular dynamics simulation, seven compounds showed stability at the active site of the target protein. Hydrogen bonds and van der Waals forces were formed with target proteins. At the same time, the seven compounds showed good binding free energy after binding to the target proteins, providing potential drug candidates for the treatment and prevention of SARS-CoV-2 and SARS-CoV-2 variants.
Moura et al., Converging Paths: A Comprehensive Review of the Synergistic Approach between Complementary Medicines and Western Medicine in Addressing COVID-19 in 2020, BioMed, doi:10.3390/biomed3020025
The rapid spread of the new coronavirus disease (COVID-19) caused by SARS-CoV-2 has become a global pandemic. Although specific vaccines are available and natural drugs are being researched, supportive care and specific treatments to alleviate symptoms and improve patient quality of life remain critical. Chinese medicine (CM) has been employed in China due to the similarities between the epidemiology, genomics, and pathogenesis of SARS-CoV-2 and SARS-CoV. Moreover, the integration of other traditional oriental medical systems into the broader framework of integrative medicine can offer a powerful approach to managing the disease. Additionally, it has been reported that integrated medicine has better effects and does not increase adverse drug reactions in the context of COVID-19. This article examines preventive measures, potential infection mechanisms, and immune responses in Western medicine (WM), as well as the pathophysiology based on principles of complementary medicine (CM). The convergence between WM and CM approaches, such as the importance of maintaining a strong immune system and promoting preventive care measures, is also addressed. Current treatment options, traditional therapies, and classical prescriptions based on empirical knowledge are also explored, with individual patient circumstances taken into account. An analysis of the potential benefits and challenges associated with the integration of complementary and Western medicine (WM) in the treatment of COVID-19 can provide valuable guidance, enrichment, and empowerment for future research endeavors.
Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, Scientific Reports, doi:10.1038/s41598-023-30095-z
AbstractThe search for an effective drug is still urgent for COVID-19 as no drug with proven clinical efficacy is available. Finding the new purpose of an approved or investigational drug, known as drug repurposing, has become increasingly popular in recent years. We propose here a new drug repurposing approach for COVID-19, based on knowledge graph (KG) embeddings. Our approach learns “ensemble embeddings” of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. Ensemble KG-embeddings are subsequently used in a deep neural network trained for discovering potential drugs for COVID-19. Compared to related works, we retrieve more in-trial drugs among our top-ranked predictions, thus giving greater confidence in our prediction for out-of-trial drugs. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. We show that Fosinopril is a potential ligand for the SARS-CoV-2 nsp13 target. We also provide explanations of our predictions thanks to rules extracted from the KG and instanciated by KG-derived explanatory paths. Molecular evaluation and explanatory paths bring reliability to our results and constitute new complementary and reusable methods for assessing KG-based drug repurposing.
Shen et al., The antiviral activity of a small molecule drug targeting the NSP1-ribosome complex against Omicron, especially in elderly patients, Frontiers in Cellular and Infection Microbiology, doi:10.3389/fcimb.2023.1141274
IntroductionWith the emergence of SARS-CoV-2 mutant strains, especially the epidemic of Omicron, it continues to evolve to strengthen immune evasion. Omicron BQ. 1 and XBB pose a serious threat to the current COVID-19 vaccine (including bivalent mRNA vaccine for mutant strains) and COVID-19-positive survivors, and all current therapeutic monoclonal antibodies are ineffective against them. Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalization and death after the initial vaccine booster. However, small-molecule drugs for conserved targets remain effective and urgently needed.MethodsThe non-structural protein of SARS-CoV-2 non-structural protein 1(Nsp1) can bind to the host 40S ribosomal subunit and activate the nuclease to hydrolyze the host RNA, while the viral RNA is unaffected, thus hijacking the host system. First, the present study analyzed mutations in the Nsp1 protein and then constructed a maximum-likelihood phylogenetic tree. A virtual drug screening method based on the Nsp1 structure (Protein Data Bank ID: 7K5I) was constructed, 7495 compounds from three databases were collected for molecular docking and virtual screening, and the binding free energy was calculated by the MM/GBSA method.ResultsOur study shows that Nsp1 is relatively conserved and can be used as a comparatively fixed drug target and that therapies against Nsp1 will target all of these variants. Golvatinib, Gliquidone, and Dihydroergotamine were superior to other compounds in the crystal structure of binding conformation and free energy. All effectively interfered with Nsp1 binding to 40S protein, confirming the potential inhibitory effect of these three compounds on SARS-CoV-2.DiscussionIn particular, Golwatinib provides a candidate for treatment and prophylaxis in elderly patients with Omicjon, suggesting further evaluation of the anti-SARS-CoV-2 activity of these compounds in cell culture. Further studies are needed to determine the utility of this finding through prospective clinical trials and identify other meaningful drug combinations.
Atoum et al., Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, Iranian Journal of Pharmaceutical Research, doi:10.5812/ijpr-131577
Context: The whole universe is facing a coronavirus catastrophe, and prompt treatment for the health crisis is primarily significant. The primary way to improve health conditions in this battle is to boost our immunity and alter our diet patterns. A common bulb veggie used to flavor cuisine is garlic. Compounds in the plant that are physiologically active are present, contributing to its pharmacological characteristics. Among several food items with nutritional value and immunity improvement, garlic stood predominant and more resourceful natural antibiotic with a broad spectrum of antiviral potency against diverse viruses. However, earlier reports have depicted its efficacy in the treatment of a variety of viral illnesses. Nonetheless, there is no information on its antiviral activities and underlying molecular mechanisms. Objectives: The bioactive compounds in garlic include organosulfur (allicin and alliin) and flavonoid (quercetin) compounds. These compounds have shown immunomodulatory effects and inhibited attachment of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor and the Mpro of SARS-CoV-2. Further, we have discussed the contradictory impacts of garlic used as a preventive measure against the novel coronavirus. Method: The GC/MS analysis revealed 18 active chemicals, including 17 organosulfur compounds in garlic. Using the molecular docking technique, we report for the first time the inhibitory effect of the under-consideration compounds on the host receptor ACE2 protein in the human body, providing a crucial foundation for understanding individual compound coronavirus resistance on the main protease protein of SARS-CoV-2. Allyl disulfide and allyl trisulfide, which make up the majority of the compounds in garlic, exhibit the most potent activity. Results: Conventional medicine has proven its efficiency from ancient times. Currently, our article's prime spotlight was on the activity of Allium sativum on the relegation of viral load and further highlighted artificial intelligence technology to study the attachment of the allicin compound to the SARS-CoV-2 receptor to reveal its efficacy. Conclusions: The COVID-19 pandemic has triggered interest among researchers to conduct future research on molecular docking with clinical trials before releasing salutary remedies against the deadly malady.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit