Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Dasabuvir for COVID-19

Dasabuvir has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Magwaza et al., Mechanistic Insights into Targeting SARS-CoV-2 Papain-like Protease in the Evolution and Management of COVID-19, BioChem, doi:10.3390/biochem4030014
The COVID-19 pandemic, instigated by the emergence of the novel coronavirus, SARS-CoV-2, created an incomparable global health crisis. Due to its highly virulent nature, identifying potential therapeutic agents against this lethal virus is crucial. PLpro is a key protein involved in viral polyprotein processing and immune system evasion, making it a prime target for the development of antiviral drugs to combat COVID-19. To expedite the search for potential therapeutic candidates, this review delved into computational studies. Recent investigations have harnessed computational methods to identify promising inhibitors targeting PLpro, aiming to suppress the viral activity. Molecular docking techniques were employed by researchers to explore the binding sites for antiviral drugs within the catalytic region of PLpro. The review elucidates the functional and structural properties of SARS-CoV-2 PLpro, underscoring its significance in viral pathogenicity and replication. Through comprehensive all-atom molecular dynamics (MD) simulations, the stability of drug–PLpro complexes was assessed, providing dynamic insights into their interactions. By evaluating binding energy estimates from MD simulations, stable drug–PLpro complexes with potential antiviral properties were identified. This review offers a comprehensive overview of the potential drug/lead candidates discovered thus far against PLpro using diverse in silico methodologies, encompassing drug repurposing, structure-based, and ligand-based virtual screenings. Additionally, the identified drugs are listed based on their chemical structures and meticulously examined according to various structural parameters, such as the estimated binding free energy (ΔG), types of intermolecular interactions, and structural stability of PLpro–ligand complexes, as determined from the outcomes of the MD simulations. Underscoring the pivotal role of targeting SARS-CoV-2 PLpro in the battle against COVID-19, this review establishes a robust foundation for identifying promising antiviral drug candidates by integrating molecular dynamics simulations, structural modeling, and computational insights. The continual imperative for the improvement of existing drugs and exploring novel compounds remains paramount in the global efforts to combat COVID-19. The evolution and management of COVID-19 hinge on the symbiotic relationship between computational insights and experimental validation, underscoring the interdisciplinary synergy crucial to this endeavor.
Sokouti, B., A review on in silico virtual screening methods in COVID-19 using anticancer drugs and other natural/chemical inhibitors, Exploration of Targeted Anti-tumor Therapy, doi:10.37349/etat.2023.00177
The present coronavirus disease 2019 (COVID-19) pandemic scenario has posed a difficulty for cancer treatment. Even under ideal conditions, malignancies like small cell lung cancer (SCLC) are challenging to treat because of their fast development and early metastases. The treatment of these patients must not be jeopardized, and they must be protected as much as possible from the continuous spread of the COVID-19 infection. Initially identified in December 2019 in Wuhan, China, the contagious coronavirus illness 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finding inhibitors against the druggable targets of SARS-CoV-2 has been a significant focus of research efforts across the globe. The primary motivation for using molecular modeling tools against SARS-CoV-2 was to identify candidates for use as therapeutic targets from a pharmacological database. In the published study, scientists used a combination of medication repurposing and virtual drug screening methodologies to target many structures of SARS-CoV-2. This virus plays an essential part in the maturation and replication of other viruses. In addition, the total binding free energy and molecular dynamics (MD) modeling findings showed that the dynamics of various medications and substances were stable; some of them have been tested experimentally against SARS-CoV-2. Different virtual screening (VS) methods have been discussed as potential means by which the evaluated medications that show strong binding to the active site might be repurposed for use against SARS-CoV-2.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit