Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

CVL218 for COVID-19

CVL218 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ge et al., A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19, bioRxiv, doi:10.1101/2020.03.11.986836
AbstractThe global spread of SARS-CoV-2 requires an urgent need to find effective therapeutics for the treatment of COVID-19. We developed a data-driven drug repositioning framework, which applies both machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. The retrospective study using the past SARS-CoV and MERS-CoV data demonstrated that our machine learning based method can successfully predict effective drug candidates against a specific coronavirus. Ourin silicoscreening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Ourin vitroassays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 is able to suppress the CpG-induced IL-6 production in peripheral blood mononuclear cells, suggesting that it may also have anti-inflammatory effect that is highly relevant to the prevention immunopathology induced by SARS-CoV-2 infection. Further pharmacokinetic and toxicokinetic evaluation in rats and monkeys showed a high concentration of CVL218 in lung and observed no apparent signs of toxicity, indicating the appealing potential of this drug for the treatment of the pneumonia caused by SARS-CoV-2 infection. Moreover, molecular docking simulation suggested that CVL218 may bind to the N-terminal domain of nucleocapsid (N) protein of SARS-CoV-2, providing a possible model to explain its antiviral action. We also proposed several possible mechanisms to explain the antiviral activities of PARP1 inhibitors against SARS-CoV-2, based on the data present in this study and previous evidences reported in the literature. In summary, the PARP1 inhibitor CVL218 discovered by our data-driven drug repositioning framework can serve as a potential therapeutic agent for the treatment of COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit